Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fault coil location of inter-turn short-circuit for direct-drive permanent magnet synchronous motor using knowledge graph

Inter-turn short-circuit fault (ISF) degrades its reliability and may cause serious catastrophes for direct-drive permanent magnet synchronous motor (DDPMSM). Fault location technology can reduce maintenance time, increase the mean time between failure (MTBF), and then improve the reliability of DDPMSM. Hence, an intelligent fault locating system for DDPMSM is proposed in this paper. This system proposes a knowledge graph (KG) based diagnostic tool for detection and location of the fault coil. First, the fault model of the DDPMSM with multiple branches parallel winding is established, which is used to analyze the fault characteristics of motor. Second, the BDC and BRC are proposed as the fault indicator. The effectiveness and robustness of fault indicator are analyzed. Then, the KG system are designed and established according to the relationship between fault indicator and location of fault coil. Finally, the system is tested by data under different fault and operation conditions. The test results showed that the proposed fault locating system can detect and locate the fault coil in early stage. The minimum ratio of shorted turns to branch turns that can be detected is 0.52%. The minimum ratio of shorted turns to branch turns that can be located is 6.25%.

References

    1. 1)
      • 23. Da, Y., Shi, X., Krishnamurthy, M.: ‘A new approach to fault diagnostics for permanent magnet synchronous machines using electromagnetic signature analysis’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 41044112.
    2. 2)
      • 13. Riera-Guasp, M., Antonino-Daviu, J., Capolino, G.: ‘Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: state of the art’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 17461759.
    3. 3)
      • 31. Gao, C., Lv, K., Si, J., et al: ‘A physical faulty model based on coil sub-element for direct-drive permanent magnet synchronous motor with stator winding short-circuit faults’, IEEE Access, 2019, 7, (1), pp. 151307151319.
    4. 4)
      • 30. Nickel, M., Murphy, K., Tresp, V., et al: ‘A review of relational machine learning for knowledge graphs’, Proc. IEEE, 2016, 104, (1), pp. 1133.
    5. 5)
      • 25. Zeng, C., Huang, S., Yang, Y., et al: ‘Inter-turn fault diagnosis of permanent magnet synchronous machine based on tooth magnetic flux analysis’, IET Electr. Power Appl., 2018, 12, (6), pp. 837844.
    6. 6)
      • 8. Zhang, B., Sconyers, C., Byington, C., et al: ‘A probabilistic fault detection approach: application to bearing fault detection’, IEEE Trans. Ind. Electron., 2011, 58, (5), pp. 20112018.
    7. 7)
      • 26. Maraaba, L.S., Al-Hamouz, Z.M., Milhem, A.S., et al: ‘Neural network-based diagnostic tool for detecting stator inter-turn faults in line start permanent magnet synchronous motors’, IEEE Access, 2019, 7, (1), pp. 8901489025.
    8. 8)
      • 28. Ince, T., Kiranyaz, S., Eren, L., et al: ‘Real-time motor fault detection by 1-D convolutional neural networks’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 70677074.
    9. 9)
      • 10. Haroun, S., Seghir, A., Touati, S.: ‘Multiple features extraction and selection for detection and classification of stator winding faults’, IET Electr. Power Appl., 2018, 12, (3), pp. 339346.
    10. 10)
      • 9. Alam, F., Rezaeealam, B., Faiz, J., et al: ‘Unbalanced magnetic force analysis in eccentric surface permanent-magnet motors using an improved conformal mapping method’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 146154.
    11. 11)
      • 4. Zielichowski, M., Szlezak, T.: ‘Ground-fault protection of four-pole generators with two parallel branches in phase winding’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 813819.
    12. 12)
      • 11. Zafarani, M., Goktas, T., Akin, B.: ‘A comprehensive analysis of magnet defect faults in permanent magnet synchronous motors’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 13311339.
    13. 13)
      • 7. Malloy, A., Martinez-Botas, R., Lamperth, M.: ‘Measurement of magnet losses in a surface mounted permanent magnet synchronous machine’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 323330.
    14. 14)
      • 1. Tong, W., Wu, S., Tang, R., et al: ‘Totally enclosed self-circulation axial ventilation system design and thermal analysis of a 1.65-MW direct-drive PMSM’, IEEE Trans. Ind. Electron., 2018, 65, (12), pp. 93889398.
    15. 15)
      • 14. Zafarain, M., Bostanci, E., Qi, Y., et al: ‘Interturn short-circuit faults in permanent magnet synchronous machines: an extended review and comprehensive analysis’, IEEE J. Emerging Sel. Topics Power Electron., 2018, 6, (4), pp. 21732191.
    16. 16)
      • 6. Xu, S., Chen, H., Dong, F., et al: ‘Online sensorless fault diagnosis and remediation strategies selection of transistors for power converter in SRD’, IET Electr. Power Appl., 2019, 13, (10), pp. 15531564.
    17. 17)
      • 16. Moon, S., Jeong, H., Lee, H., et al: ‘Interturn short fault diagnosis in a PMSM by voltage and current residual analysis with the faulty winding model’, IEEE Trans. Energy Convers., 2018, 33, (1), pp. 190198.
    18. 18)
      • 15. Maraaba, L.S., Al-Hamouz, Z.M., Abido, M.A.: ‘An accurate tool for detecting stator inter-turn fault in LSPMSM’, IEEE Access, 2019, 7, (1), pp. 8862288634.
    19. 19)
      • 22. Barzegaran, M., Mazloomzadeh, A., Mohammed, O.A.: ‘Fault diagnosis of the asynchronous machines through magnetic signature analysis using finite-element method and neural networks’, IEEE Trans. Energy Convers., 2013, 28, (4), pp. 10641071.
    20. 20)
      • 20. Mirafzal, B., Povinelli, R., Demerdash, N.: ‘Interturn fault diagnosis in induction motors using the pendulous oscillation phenomenon’, IEEE Trans. Energy Convers., 2006, 21, (4), pp. 871882.
    21. 21)
      • 32. Qi, Y., Bostanci, E., Zafarani, M., et al: ‘Severity estimation of inter turn short circuit fault for PMSM’, IEEE Trans. Ind. Electron., 2019, 66, (9), pp. 72607269.
    22. 22)
      • 18. Vinayak, B.A., Anand, K.A., Jagadanand, G.: ‘Wavelet-based real-time stator fault detection of inverter-fed induction motor’, IET Electr. Power Appl., 2020, 14, (1), pp. 8290.
    23. 23)
      • 5. Choi, G., Jahns, T.M.: ‘PM synchronous machine drive response to asymmetrical short-circuit faults’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 21672185.
    24. 24)
      • 21. Ceban, A., Pusca, R., Romary, R.: ‘Study of rotor faults in induction motors using external magnetic field analysis’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 20822093.
    25. 25)
      • 29. Wang, Q., Mao, Z., Wang, B., et al: ‘Knowledge graph embedding: a survey of approaches and applications’, IEEE Trans. Knowl. Data Eng., 2017, 29, (12), pp. 27242743.
    26. 26)
      • 24. Liu, X., Miao, W., Xu, Q., et al: ‘Inter-turn short-circuit fault detection approach for permanent magnet synchronous machines through stray magnetic field sensing’, IEEE Sensors J., 2019, 19, (18), pp. 78847895.
    27. 27)
      • 2. Nerg, J., Rillat, M., Ruuskanen, V., et al: ‘Direct-driven Interior magnet permanent-magnet synchronous motors for a full electric sports car’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 42684293.
    28. 28)
      • 19. Bouzid, M., Champenois, G., Bellaaj, N., et al: ‘An effective neural approach for the automatic location of stator interturn faults in induction motor’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 42774288.
    29. 29)
      • 17. Bouzid, M.B.K., Champenois, G.: ‘An efficient simplified physical faulty model of a permanent magnet synchronous generator dedicated to stator fault diagnosis part II: automatic stator fault diagnosis’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 27622771.
    30. 30)
      • 12. Maraaba, L., AlHamouz, Z., Abido, M.: ‘Mathematical modeling, simulation and experimental testing of interior-mount LSPMSM under stator inter-turn fault’, IEEE Trans. Energy Convers., 2019, 34, (3), pp. 12131222.
    31. 31)
      • 27. Henao, H., Capolino, G., Cabanas, M., et al: ‘Trends in fault diagnosis for electrical machines: a review of diagnostic techniques’, IEEE Ind. Electron. Mag., 2014, 8, (2), pp. 3142.
    32. 32)
      • 3. Bruzzese, C.: ‘Diagnosis of eccentric rotor in synchronous machines by analysis of split-phase currents—part II: experimental analysis’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 42064216.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2020.0123
Loading

Related content

content/journals/10.1049/iet-epa.2020.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address