access icon free Comparative researches on double-sided switched reluctance linear machines with different winding connections

This study presents comparative researches on performances of a double-sided switched reluctance linear machine (DSRLM) under different winding connection modes. The static self/mutual inductances of a 6/4 yokeless DSRLM under two winding connection modes are calculated through the finite element method (FEM). This DSRLM can work either as a motor or as a generator. Now the performances of the DSRLM under different winding connection modes, including the force ripple in the electric model and the output voltage ripple in generation model, are compared through an established electric model and an established generation model. In addition, the iron losses under different winding connections are also investigated. Dynamic magnetic flux density waveforms of the DSRLM are calculated via FEM, and an iron loss computation module is established. Simulation results indicate that the advantages of both winding connections reflect in different aspects. This study summarises how to select a proper winding connection mode of DSRLMs for different performance demands responding to different applications. The experimental validations are conducted on a prototype DSRLM finally.

Inspec keywords: linear machines; inductance; machine control; finite element analysis; magnetic flux; permanent magnet machines

Other keywords: reluctance linear machine; different winding connections; double-sided switched reluctance linear machines; comparative researches; prototype DSRLM; different winding connection modes; different performance demands; established electric model; established generation model

Subjects: Finite element analysis; Synchronous machines; Control of electric power systems; Linear machines; Power convertors and power supplies to apparatus

References

    1. 1)
      • 18. Ding, W., Liu, L., Lou, J., et al: ‘Comparative studies on mutually coupled dual-channel switched reluctance machines with different winding connections’, IEEE Trans. Magn., 2013, 49, (11), pp. 55745589.
    2. 2)
      • 19. Azar, Z., Zhu, Z.Q.: ‘Investigation of electromagnetic performance of salient-pole synchronous reluctance machines having different concentrated winding connections’. IEEE Conf. on Int. Electric Machines & Drives, Chicago, USA, 2013.
    3. 3)
      • 4. Lim, H.S., Krishnan, R., Lobo, N.S.: ‘Design and control of a linear propulsion system for an elevator using linear switched reluctance motor drives’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 534542.
    4. 4)
      • 10. Zhang, Z., Cheung, N., Cheng, K., et al: ‘Longitudinal and transversal end-effects analysis of linear switched reluctance motor’, IEEE Trans. Magn., 2011, 47, (10), pp. 39793982.
    5. 5)
      • 8. Mohammad, R.S., Hassan, A., Siamak, M.: ‘Optimisation of double-sided linear switched reluctance motor for mass and force ripple minimization’, IET Sci. Meas. Technol., 2019, 13, (4), pp. 509517.
    6. 6)
      • 25. Mthombeni, T.L., Pillay, P.: ‘Lamination core losses in motors with non-sinusoidal excitation with particular reference to PWM and SRM excitation waveforms’, IEEE Trans. Energy Convers., 2005, 20, (4), pp. 836843.
    7. 7)
      • 3. Chen, H., Xu, S., Wei, W., et al: ‘Reliability assessment of double-sided linear switched reluctance generator system based on hierarchical Markov model’, IEEE Trans. Ind. Electron., 2019, 66, (6), pp. 49014911.
    8. 8)
      • 22. Dan, M., Popescu, M., McGilp, M.I., et al: ‘Computation of core losses in electrical machines using improved models for laminated steel’, IEEE Trans. Ind. Appl., 2007, 43, (6), pp. 15541564.
    9. 9)
      • 13. Yan, N., Cao, X., Deng, Z., et al: ‘Direct torque control for switched reluctance motor to obtain high torque–ampere ratio’, IEEE Trans. Ind. Electron., 2018, 66, (7), pp. 51145152.
    10. 10)
      • 20. Deng, X., Mecrow, B., Martin, R., et al: ‘Effects of winding connection on performance of a six-phase switched reluctance machine’, IEEE Trans. Energy Convers., 2018, 33, (1), pp. 166178.
    11. 11)
      • 17. Deng, X., Mecrow, B.C., Haimeng, W., et al: ‘Cost-effective and high-efficiency variable-speed switched reluctance drives with ring-connected winding configuration’, IEEE Trans. Energy Convers., 2019, 34, (1), pp. 120129.
    12. 12)
      • 1. Wang, D., Du, X., Zhang, D., et al: ‘Design, optimization, and prototyping of segmental-type linear switched-reluctance motor with a toroidally wound mover for vertical propulsion application’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 18651874.
    13. 13)
      • 6. Wang, D., Zhang, D., Du, X., et al: ‘Unitized design methodology of linear switched reluctance motor with segmental secondary for long rail propulsion application’, IEEE Trans. Ind. Electron., 2018, 65, (12), pp. 98849894.
    14. 14)
      • 29. Sadowski, N., Lajoie-Mazenc, M., Bastos, J. P.A., et al: ‘Evaluation and analysis of iron losses in electrical machines using the rain-flow method’, IEEE Trans. Magn., 2000, 36, (4), pp. 19231926.
    15. 15)
      • 24. Chen, L., Chen, H., Yan, W.: ‘A fast iron loss calculation model for switched reluctance motors’, IET Electr. Power Appl., 2017, 11, (3), pp. 478486.
    16. 16)
      • 14. Mikail, R., Husain, I., Sozer, Y., et al: ‘Torque-ripple minimization of switched reluctance machines through current profiling’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 12581267.
    17. 17)
      • 5. Masoudi, S., Banna, S.M.B., Feyzi, M.R.: ‘Force ripple and jerk minimisation in double sided linear switched reluctance motor used in elevator application’, IET Electr. Power Appl., 2016, 10, (6), pp. 508516.
    18. 18)
      • 21. Cui, X., Sun, J., Gu, C.: ‘Iron loss and start-up ability of a 6/2 switched reluctance machine with different magnetic polarity of windings’, IET Electr. Power Appl., 2019, 13, (9), pp. 13481354.
    19. 19)
      • 2. Garcia-Amoros, J., Andrada, P., Blanque, B., et al: ‘Influence of design parameters in the optimization of linear switched reluctance motor under thermal constraints’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 18751883.
    20. 20)
      • 30. Daniel, E., Simon, S., Kay, H.: ‘Advanced iron-loss estimation for nonlinear material behaviour’, IEEE Trans. Magn., 2012, 48, (11), pp. 30213024.
    21. 21)
      • 26. Chen, H., Wang, Q.: ‘Modeling of switched reluctance linear launcher’, IEEE Trans. Plasma Sci., 2013, 41, (5), pp. 11231130.
    22. 22)
      • 15. Yao, S., Zhang, W.: ‘A simple strategy for parameters identification of SRM direct instantaneous torque control’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 36223630.
    23. 23)
      • 23. Hayashi, Y., Miller, T.J.E.: ‘A new approach to calculating core losses in the SRM’, IEEE Trans. Ind. Appl., 1995, 31, (5), pp. 10391046.
    24. 24)
      • 28. Krishnan, R.: ‘Switched reluctance motor drives: modeling, simulation, analysis, design and application’ (CRC Press, New York, USA, 2001, 1st edn.), pp. 118153.
    25. 25)
      • 16. Hu, Y., Ding, W., Wang, T., et al: ‘Investigation on a multimode switched reluctance motor: design, optimization, electromagnetic analysis, and experiment’, IEEE Trans. Ind. Electron., 2017, 64, (12), pp. 98869895.
    26. 26)
      • 27. Nie, R., Chen, H., Wang, H., et al: ‘High-precision non-linear modelling method for a switched reluctance linear machine by interpolation with using variant sigmoid function’, IET Electr. Power Appl., 2020, 14, (3), pp. 512522.
    27. 27)
      • 12. Nabeta, S., Chabu, I., Lebensztajn, L., et al: ‘Mitigation of the torque ripple of a switched reluctance motor through a multiobjective optimization’, IEEE Trans. Magn., 2008, 44, (6), pp. 10181021.
    28. 28)
      • 7. Pan, J.F., Zou, Y., Cheung, N., et al: ‘On the voltage ripple reduction control of the linear switched reluctance generator for wave energy utilization’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 52985307.
    29. 29)
      • 9. Deshpande, U.: ‘Two-dimensional finite element analysis of a high force density linear switched reluctance machine including three-dimensional effects’, IEEE Trans. Ind. Appl., 2000, 36, (4), pp. 10471052.
    30. 30)
      • 11. Choi, Y., Yoon, H., Koh, C.: ‘Pole-shape optimization of a switched-reluctance motor for torque ripple reduction’, IEEE Trans. Magn., 2007, 43, (4), pp. 17971800.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2020.0072
Loading

Related content

content/journals/10.1049/iet-epa.2020.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading