access icon free Iron loss prediction in high-speed permanent-magnet machines using loss model with variable coefficients

Iron loss prediction is extremely crucial to performance and thermal analysis for high-speed permanent-magnet (PM) machines, but it is difficult to conduct at arbitrary frequency especially high frequency. Due to the frequency-dependent coefficients of iron loss model, although iron loss can be calculated by loss model with constant coefficients under fixed frequencies, it is not feasible to measure the required loss data of non-oriented electrical steel under each frequency. Moreover, toroid tester is better to obtain accurate loss data of steel, but the data under specific high frequency cannot be directly measured due to the limitation of equipment and tester. Thus, this study presents a three-term iron loss model with variable coefficients to predict iron loss of machines at arbitrary frequency, especially high frequency based on measured loss data of steel at low frequency. Although both proposed three-term model and conventional two-term model with variable coefficients can predict iron loss of machines at an arbitrary frequency, the comparison shows that the accuracy of the three-term model is higher. In addition, experiments validate that proposed three-term model with variable coefficients is accurate and feasible for iron loss prediction in high-speed PM machines.

Inspec keywords: magnetic cores; loss measurement; steel; magnetic leakage; finite element analysis; silicon alloys; laminations; losses; permanent magnet machines; eddy current losses

Other keywords: arbitrary frequency; high-speed permanent-magnet machines; high-speed PM machines; iron loss prediction; measured loss data; variable coefficients; three-term model; specific high frequency; three-term iron loss model; accurate loss data; two-term model; fixed frequencies; frequency-dependent coefficients; required loss data

Subjects: Magnetic cores; Finite element analysis; a.c. machines; d.c. machines

References

    1. 1)
      • 26. Takahashi, N., Morishita, M., Miyagi, D., et al: ‘Examination of magnetic properties of magnetic materials at high temperature using a ring specimen’, IEEE Trans. Magn., 2010, 46, (2), pp. 548551.
    2. 2)
      • 7. Huang, Z.Y., Fang, J.C., Liu, X.Q., et al: ‘Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 20272035.
    3. 3)
      • 15. Bertotti, G.: ‘General properties of power losses in soft ferromagnetic materials’, IEEE Trans. Magn., 1988, 24, (1), pp. 621630.
    4. 4)
      • 10. Wrobel, R., Mellor, P.H., Popescu, M., et al: ‘Power loss analysis in thermal design of permanent-magnet machines – a review’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 13591368.
    5. 5)
      • 18. Zhao, H.S., Luo, Y.L., Wang, R.H., et al: ‘A complete model for iron losses prediction in electric machines including material measurement, data fitting, FE computation and experimental validation’, Prz. Elektrotech., Electr. Rev., 2012, 88, (5b), pp. 5255.
    6. 6)
      • 23. Miyagi, D., Miki, K., Nakano, M., et al: ‘Influence of compressive stress on magnetic properties of laminated electrical steel’, IEEE Trans. Magn., 2010, 46, (2), pp. 318321.
    7. 7)
      • 32. Kim, J., Jeong, I., Nam, K., et al: ‘Sensorless control of PMSM in a high-speed region considering iron loss’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 61516159.
    8. 8)
      • 35. de Espíndola, A.A., Tristão, F., Schlegel, J.P., et al: ‘Comparison of iron losses evaluations by different testing procedures’. Int. Conf. on Electrical Machines – ICEM 2010, Rome, Italy, September 2010.
    9. 9)
      • 3. Shen, J.X., Qin, X.F., Wang, Y.C.: ‘High-speed permanent magnet electrical machines – applications, key issues and challenges’, CES Trans. Electr. Mach. Syst., 2018, 2, (1), pp. 2333.
    10. 10)
      • 13. Zhang, F.G., Du, G.H., Wang, T.Y., et al: ‘Electromagnetic design and loss calculations of a 1.12-MW high-speed permanent-magnet motor for compressor applications’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 132140.
    11. 11)
      • 29. Lancarotte, M.S., Goldemberg, C., Penteado, A.d.A.: ‘Estimation of FeSi core losses under PWM or DC bias ripple voltage excitations’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 367372.
    12. 12)
      • 24. Oda, Y., Toda, H., Shiga, N., et al: ‘Effect of Si content on iron loss of electrical steel sheet under compressive stress’, IEEE. Trans. Magn., 2014, 50, (4), pp. 14, Art. 2002340.
    13. 13)
      • 6. Uzhegov, N., Kurvinen, E., Nerg, J., et al: ‘Multidisciplinary design process of a 6-Slot 2-Pole high-speed permanent-magnet synchronous machine’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 784795.
    14. 14)
      • 14. Steinmetz, C.P.: ‘On the law of hysteresis (originally published in 1982)’, Proc. IEEE, 1984, 72, (2), pp. 197221.
    15. 15)
      • 5. Pfister, P.D., Perriard, Y.: ‘Very-high-speed slotless permanent-magnet motors: analytical modeling, optimization, design, and torque measurement methods’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 296303.
    16. 16)
      • 17. Seo, J.H., Kwak, S.Y., Jung, S.Y., et al: ‘A research on iron loss of IPMSM with a frictional number of slot per pole’, IEEE Trans. Magn., 2009, 45, (3), pp. 18241827.
    17. 17)
      • 2. Tenconi, A., Vaschetto, S., Vigliani, A.: ‘Electrical machines for high-speed applications: design considerations and tradeoffs’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 30223029.
    18. 18)
      • 25. Yamazaki, K., Fukushima, W.: ‘Loss analysis of induction motors by considering shrink fitting of stator housings’, IEEE Trans. Magn., 2015, 51, (3), pp. 14, Art. 8102004.
    19. 19)
      • 1. Gerada, D., Mebarki, A., Brown, N.L., et al: ‘High-speed electrical machines: technologies, trends, and developments’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29462959.
    20. 20)
      • 31. Ibrahim, M., Pillay, P.: ‘A hybrid model for improved hysteresis loss prediction in electrical machines’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 25032511.
    21. 21)
      • 12. Jannot, X., Vannier, J.C., Marchand, C., et al: ‘Multiphysic modeling of a high-speed interior permanent-magnet synchronous machine for a multiobjective optimal design’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 457467.
    22. 22)
      • 16. Bertotti, G., Fiorillo, F., Soardo, G.P.: ‘The prediction of power losses in soft magnetic materials’, J. Phys. Colloques, 1988, 49, (C8), pp. C8-1915C8-1919.
    23. 23)
      • 4. Borisavljevic, A., Polinder, H., Abraham Ferreira, J.: ‘On the speed limits of permanent-magnet machines’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 220227.
    24. 24)
      • 27. Xue, S.S., Feng, J.H., Guo, S.Y., et al: ‘Iron loss model under DC bias flux density considering temperature influence’, IEEE Trans. Magn., 2017, 53, (11), pp. 14, Art. 6100804.
    25. 25)
      • 36. Krings, A., Soulard, J.: ‘Experimental characterization of magnetic materials for electrical machine applications’. IEEE Workshop on Electrical Machines Design, Control and Diagnosis – WEMDCD 2015, Torino, Italy, March 2015.
    26. 26)
      • 30. Xue, S.S., Feng, J.H., Guo, S.Y., et al: ‘Iron loss model for electrical machine fed by low switching frequency inverter’, IEEE Trans. Magn., 2017, 53, (11), pp. 14, Art. 2801004.
    27. 27)
      • 22. Eggers, D., Steentjes, S., Hameyer, K.: ‘Advanced iron-loss estimation for nonlinear material behavior’, IEEE Trans. Magn., 2012, 48, (11), pp. 30213024.
    28. 28)
      • 19. Zhao, H.S., Zhang, D.D., Wang, Y.L., et al: ‘Piecewise variable parameter loss model of laminated steel and its application in fine analysis of iron loss of inverter-fed induction motors’, IEEE Trans. Ind. Appl., 2018, 54, (1), pp. 832840.
    29. 29)
      • 8. Timimy, A.A., Giangrande, P., Degano, M., et al: ‘Design and losses analysis of a high power density machine for flooded pump applications’, IEEE Trans. Ind. Appl., 2018, 54, (4), pp. 32603270.
    30. 30)
      • 20. Chen, Y.C., Pillay, P.: ‘An improved formula for lamination core loss calculations in machines operating with high frequency and high flux density excitation’. IEEE 37th IAS Annual Meeting, Pittsburgh, USA., October 2002, vol. 2, pp. 759766.
    31. 31)
      • 21. Kowal, D., Sergeant, P., Dupré, L., et al: ‘Comparison of iron loss models for electrical machines with different frequency domain and time domain methods for excess loss prediction’, IEEE Trans. Magn., 2015, 51, (1), pp. 110, Art. 6300110.
    32. 32)
      • 11. Zhang, Y., McLoone, S., Cao, W.P., et al: ‘Power loss and thermal analysis of a MW high-speed permanent magnet synchronous machine’, IEEE Trans. Energy Convers., 2017, 32, (4), pp. 14681478.
    33. 33)
      • 28. Zhu, S., Cheng, M., Dong, J., et al: ‘Core loss analysis and calculation of stator permanent-magnet machine considering DC-biased magnetic induction’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 52035212.
    34. 34)
      • 33. Pillay, P.: ‘Improved design of motors for increased efficiency in residential and commercial buildings’. Building Technologies Program Topical Report, December 2008.
    35. 35)
      • 9. Du, G.H., Xu, W., Zhu, J.G., et al: ‘Power loss and thermal analysis for high power high speed permanent magnet machines’, IEEE Trans. Ind. Electron., 2020, 67, (4), pp. 27222733.
    36. 36)
      • 34. IEC 60404-2, Magnetic materials. Part 2: methods of measurement of the magnetic properties of electrical steel sheet and strip by means of an Epstein frame, 1996.
    37. 37)
      • 37. Guan, W., Zhang, D., Zhu, Y.Y., et al: ‘Numerical modeling of iron loss considering laminated structure and excess loss’, IEEE Trans. Magn., 2018, 54, (11), pp. 14, Art. 6300804.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2020.0038
Loading

Related content

content/journals/10.1049/iet-epa.2020.0038
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading