access icon free Influence of winding topologies and encapsulation materials on FSPM machine thermal performance

This study investigates the thermal impact of using different winding topologies and different winding encapsulation materials on dual-stator 6/4 flux-switching permanent magnet (FSPM) machine with water jacket cooling. The thermal performance of four different design cases are compared using lumped-parameter thermal network models. The modelling of the heat transfer in the stator slot, machine air gap and water jacket channel are presented. It is shown that FSPM machines with circumferential winding and toroidal winding have different thermal limiting components and the winding encapsulation material has a different impact on the thermal performance of the two winding topologies. Prototype motors are built and tested to validate the thermal models.

Inspec keywords: finite element analysis; permanent magnet machines; permanent magnets; magnetic flux; stators; cooling; rotors; air gaps

Other keywords: winding encapsulation material; circumferential winding; thermal models; different design cases; stator slot; machine air gap; toroidal winding; FSPM machine thermal performance; dual-stator; lumped-parameter thermal network models; different winding encapsulation materials; FSPM machines; different winding topologies; water jacket; thermal impact

Subjects: Finite element analysis; d.c. machines; Synchronous machines; a.c. machines

References

    1. 1)
      • 5. Acquaviva, A., Wallmark, O., Grunditz, E. A., et al: ‘Computationally efficient modeling of electrical machines with cooling jacket’, IEEE Trans. Transp. Electr., 2019, 5, (3), pp. 618629.
    2. 2)
      • 15. Asef, P., Perpina, R.B., Lapthorn, A.C.: ‘Optimal pole number for magnetic noise reduction in variable-speed permanent magnet synchronous machines with fractional-slot concentrated windings’, IEEE Trans. Transp. Electr., 2019, 5, (1), pp. 126134.
    3. 3)
      • 3. Zhu, J., Cheng, K.W.E., Xue, X.: ‘Design and analysis of a new enhanced torque hybrid switched reluctance motor’, IEEE Trans. Energy Convers., 2018, 33, (4), pp. 19651977.
    4. 4)
      • 12. Cai, X., Cheng, M., Zhu, S., et al: ‘Thermal modeling of flux-switching permanent-magnet machines considering anisotropic conductivity and thermal contact resistance’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 33553365.
    5. 5)
      • 13. Liu, M., Li, Y., Sarlioglu, B.: ‘Thermal analysis of a novel dual-stator 6/4 flux-switching permanent magnet machine’. Proc. IEEE Power Energy Soc. Gener. Meet. (PESGM), Chicago, United States, August 2017, pp. 15.
    6. 6)
      • 10. Cheng, M., Wang, J., Zhu, S., et al: ‘Loss calculation and thermal analysis for nine-phase flux switching permanent magnet machine’, IEEE Trans. Energy Convers., 2018, 33, (4), pp. 21332142.
    7. 7)
      • 19. Ayat, S., Liu, H., Chauvicourt, F., et al: ‘Experimental derivation of thermal parameters of the stator winding region in thermal analysis of PM electrical machines’. Proc. IEEE Annu. Conf. Ind. Electron. Soc. (IECON), Washington, United States, 2018, 10, pp. 496501.
    8. 8)
      • 16. Nategh, S., Wallmark, O., Leksell, M., et al: ‘Thermal analysis of a PMaSRM using partial FEA and lumped parameter modeling’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 477488.
    9. 9)
      • 14. Liu, M., Sixel, W., Li, Y., et al: ‘Design and comparison of single-layer dual-stator 6/4 FSPM machine with toroidal winding’. Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Baltimore, United States, September–October 2019, pp. 38133819.
    10. 10)
      • 17. Fénot, M., Bertin, Y., Dorignac, E., et al: ‘A review of heat transfer between concentric rotating cylinders with or without axial flow’, Int. J. Therm. Sci., 2011, 50, (7), pp. 11381155.
    11. 11)
      • 18. Staton, D.A., Cavagnino, A.: ‘Convection heat transfer and flow calculations suitable for electric machines thermal models’, IEEE Trans. Ind. Electron., 2008, 55, (10), pp. 35093516.
    12. 12)
      • 1. Chiba, A., Kiyota, K., Hoshi, N., et al: ‘Development of a rare-earth-free SR motor with high torque density for hybrid vehicles’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 175182.
    13. 13)
      • 8. Yang, Y., Bilgin, B., Kasprzak, M., et al: ‘Thermal management of electric machines’, IET Electr. Syst. Transp., 2017, 7, (2), pp. 104116.
    14. 14)
      • 20. Boglietti, A., Carpaneto, E., Cossale, M., et al: ‘Stator winding thermal conductivity evaluation: an industrial production assessment’. Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Montreal Canada, 2015, vol. 9, pp. 48654871.
    15. 15)
      • 6. Li, D., Qu, R., Li, J., et al: ‘Synthesis of flux switching permanent magnet machines’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 106117.
    16. 16)
      • 9. Boglietti, A., Cavagnino, A., Staton, D., et al: ‘Evolution and modern approaches for thermal analysis of electrical machines’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 871882.
    17. 17)
      • 7. Zhu, Z.Q.: ‘Overview of novel magnetically geared machines with partitioned stators’, IET Electr. Power Appl., 2018, 12, (5), pp. 595604.
    18. 18)
      • 2. Roggia, S., Cupertino, F., Gerada, C., et al: ‘A two-degrees-of-freedom system for wheel traction applications’, IEEE Trans. Ind. Electron., 2018, 65, (6), pp. 44834491.
    19. 19)
      • 4. Chen, Q., Liang, D., Gao, L., et al: ‘Hierarchical thermal network analysis of axial-flux permanent-magnet synchronous machine for electric motorcycle’, IET Electr. Power Appl., 2018, 12, (6), pp. 859866.
    20. 20)
      • 11. Li, G., Ojeda, J., Hoang, E., et al: ‘Thermal–electromagnetic analysis for driving cycles of embedded flux-switching permanent-magnet motors’, IEEE Trans. Veh. Technol., 2012, 61, (1), pp. 140151.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.1058
Loading

Related content

content/journals/10.1049/iet-epa.2019.1058
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading