access icon free Backstepping control of three-pole radial hybrid magnetic bearing

To improve dynamic performance and robustness of a three-pole radial hybrid magnetic bearing (HMB), a backstepping controller is designed in this study. After introducing configuration of the three-pole radial HMB, the mathematical model is established by using the equivalent magnetic circuit method, and then the state equations are derived. Based on the state equations, the backstepping controller is designed by conducting backstepping algorithm and Lyapunov theorem which is adopted to confirm the stability of the system. Aiming at the difficulty of parameter adjustment, the adjustment factor is introduced through theoretical analysis. And the suitable value range of regulation factor is given by simulation. To identify the validity of the presented controller, the backstepping controller and the proportional–integral–derivative (PID) controller are compared by simulation and experiment. Simulation and experimental results have verified that the dynamic performance and the robustness of the backstepping controller are superior to the PID controller.

Inspec keywords: magnetic bearings; nonlinear control systems; magnetic circuits; control system synthesis; Lyapunov methods; three-term control

Other keywords: backstepping controller; dynamic performance; proportional–integral–derivative controller; three-pole radial HMB; equivalent magnetic circuit method; backstepping control; backstepping algorithm; state equations; three-pole radial hybrid magnetic bearing; PID controller

Subjects: Stability in control theory; Control system analysis and synthesis methods; Other magnetic material applications and devices; Nonlinear control systems

References

    1. 1)
      • 13. Zhou, J., Deng, Z., Liu, C., et al: ‘Current ripple analysis of five-phase six-leg switching power amplifiers for magnetic bearing with one-cycle control’. 19th Int. Conf. on Electrical Machines and Systems, Chiba, Japan, November 2016, pp. 16.
    2. 2)
      • 26. Zou, H., Lei, J., Yu, H.: ‘Extended Lyapunov stability theorem and its applications in control system with constrained input’. Int. Symp. Computer Network Multimedia Technology, Wuhan, China, January 2009, pp. 14.
    3. 3)
      • 15. Yang, H., Zhao, R.X., Tang, Q.B.: ‘Study on inverter-fed three-pole active magnetic bearing’. Applied Power Electronics Conf. Exposition, Dallas, America, March 2006, pp. 15761581.
    4. 4)
      • 18. Chen, S.L.: ‘Nonlinear smooth feedback control of a three-pole cctive magnetic bearing system’, IEEE Trans. Control Syst. Technol., 2011, 19, (3), pp. 615621.
    5. 5)
      • 16. Garcia, P., Guerrero, J.M., Briz, F., et al: ‘Sensorless control of three-pole active magnetic bearings using saliency-tracking-based methods’, IEEE Trans. Ind. Appl., 2009, 46, (4), pp. 14761484.
    6. 6)
      • 1. Peng, C., Sun, J.J., Song, X.D., et al: ‘Frequency-varying current harmonics for active magnetic bearing via multiple resonant controllers’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 517526.
    7. 7)
      • 3. Zhang, T., Ye, X., Mo, L., et al: ‘Modeling and performance analysis on the slice hybrid magnetic bearing with two radial air-gaps’, IEEE Trans. Appl. Supercond., 2019, 29, (2), pp. 15.
    8. 8)
      • 4. Basaran, S., Sivrioglu, S.: ‘Novel repulsive magnetic bearing flywheel system with composite adaptive control’, IET Electr. Power Appl., 2019, 13, (5), pp. 676685.
    9. 9)
      • 27. Zhong, J., Li, L.: ‘Tuning fractional-order PIλDμ controllers for a solid-core magnetic bearing system’, IEEE Trans. Control Syst. Technol., 2015, 23, (4), pp. 16481656.
    10. 10)
      • 22. Mehraeen, S., Jagannathan, S., Crow, M.L.: ‘Power system stabilization using adaptive neural network-based dynamic surface control’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 669680.
    11. 11)
      • 23. Song, M., Lin, Y.: ‘Brief paper-modified adaptive backstepping design method for linear systems’, IET Control Theory Appl., 2012, 6, (8), pp. 11371144.
    12. 12)
      • 2. Ren, X.J., Sun, J.J., Peng, C., et al: ‘Analysis and design method of a combined radial-axial magnetic bearing based on asymmetric factor’, IET Electr. Power Appl., 2019, 13, (5), pp. 686693.
    13. 13)
      • 7. Jiang, D., Li, T., Hu, Z., et al: ‘Novel topologies of power electronics converter as active magnetic bearing drive’, IEEE Trans. Ind. Electron., 2020, 67, (2), pp. 950959.
    14. 14)
      • 25. Yang, Z.X., Zhao, G.S., Rong, H.: ‘Adaptive backstepping neural controller for nonlinear thrust active magnetic bearing system’. World Congress Intelligent Control Automation, Shenyang, China, June 2015, pp. 37533758.
    15. 15)
      • 5. Safaeian, R., Heydari, H.: ‘Optimal design of a compact passive magnetic bearing based on dynamic modelling’, IET Electr. Power Appl., 2019, 13, (6), pp. 720729.
    16. 16)
      • 19. Jesna, V.A., Ushakumari, S.: ‘Stabilization of three pole active magnetic bearing by sliding mode control techniques’. Int. Conf. Green Technologies, Kerala, India, December 2012, pp. 147154.
    17. 17)
      • 17. Garcia, P., Guerrero, J.M., Mahmoud, E.S., et al: ‘Impact of saturation, current command selection, and leakage flux on the performance of sensorless-controlled three-pole active magnetic bearings’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 17321740.
    18. 18)
      • 14. Zhang, W.Y., Zhu, H.Q.: ‘Improved model and experiment for AC-DC three-degree-of-freedom hybrid magnetic bearing’, IEEE Trans. Magn., 2013, 49, (11), pp. 55545565.
    19. 19)
      • 9. Zhu, R., Xu, W., Ye, C., et al: ‘Design optimization of a novel heteropolar radial hybrid magnetic bearing using magnetic circuit model’, IEEE Trans. Magn., 2018, 54, (3), pp. 15.
    20. 20)
      • 11. Daoud, M.I., Abdel-Khalik, A.S., Massoud, A, et al: ‘A design example of an 8-pole radial AMB for flywheel energy storage’. XXth Int. Conf. Electrical Machines, Marseille, French, September 2012, pp. 11531159.
    21. 21)
      • 21. Pavlichkov, S.S., Dashkovskiy, S.N., Pang, C.K.: ‘Uniform stabilization of nonlinear systems with arbitrary switchings and dynamic uncertainties’, IEEE Trans. Autom. Control, 2017, 62, (5), pp. 22072222.
    22. 22)
      • 6. Matsuzaki, T., Takemoto, M., Ogasawara, S., et al: ‘Novel structure of three-axis active-control-type magnetic bearing for reducing rotor iron loss’, IEEE Trans. Magn., 2016, 52, (7), pp. 14.
    23. 23)
      • 24. Dong, L.L., You, S.L.: ‘Adaptive back-stepping control of active magnetic bearings’. Int. Conf. Control Automation, Hangzhou, China, June 2013, pp. 452457.
    24. 24)
      • 12. Fang, J.C., Sun, J.J., Liu, H., et al: ‘A novel 3-DOF axial hybrid magnetic bearing’, IEEE Trans. Magn.., 2010, 46, (12), pp. 40344045.
    25. 25)
      • 8. Wang, K., Wang, D., Shen, Y., et al: ‘Subdomain method for permanent magnet biased homo-polar radial magnetic bearing’, IEEE Trans. Magn., 2016, 52, (7), pp. 15.
    26. 26)
      • 20. Darbandi, S.M., Behzad, M., Salarieh, H., et al: ‘Linear output feedback control of a three-pole magnetic bearing’, IEEE/ASME Trans. Mechatronics, 2014, 19, (4), pp. 13231330.
    27. 27)
      • 10. Xu, Z., Xu, L., Han, B.C., et al: ‘Magnetic circuit designing and structural optimisation for a three degree-of-freedom hybrid magnetic bearing’, IET Electr. Power Appl., 2018, 12, (8), pp. 10821089.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.1008
Loading

Related content

content/journals/10.1049/iet-epa.2019.1008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading