Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free High-voltage pulse transformer for IOT modulators

Neutron sources like European Spallation Source consist of linear proton accelerator and beam target. The linear accelerator is supplied by inductive output tubes (IOTs) or klystrons that require high-voltage DC supply (40 kV). This study describes the design and experimental evaluation of high-voltage dry-isolation pulse transformer design evaluation prototype for interleaved IOT supply modules. In order to withstand high-voltage stress, a modular secondary winding module with multistage voltage field equalisation are designed. Inter-winding connections are realised in the air as the separate winding outputs are routed together through common high-voltage isolators. The novelties of the current manuscript are new pulse transformer design and the experimental work. Experiments with full-scale prototype verified the advantages and revealed, also, some drawbacks of this construction. Proposed transformer design could be used not only in IOT or klystron power supplies but also in high-voltage DC/DC or AC/AC converters and power electronic transformers, used in the medium-voltage distribution grids.

References

    1. 1)
      • 19. Dowell, P.L.: ‘Effects of eddy currents in transformer windings’, Proc. IEEE, 1966, 113, (8), pp. 13871394.
    2. 2)
      • 21. ‘Metglas 2605SA1 material datasheet’. Available at https://metglas.com/wp-content/uploads/2016/12/2605SA1-Magnetic-Alloy.pdf, accessed October 2019.
    3. 3)
      • 5. Collins, M., Reinap, A., Martins, C., et al: ‘Stacked multi-level long pulse modulator topology for ESS’. Proc. Int. Conf. IEEE Int. Power Modulator and High Voltage Conf. (IPMHVC), San Francisco, USA, 2016, pp. 552557.
    4. 4)
      • 22. Abed, Y.: ‘Effect of temperature rise on leakage current and breakdown of power cables’. Proc. Int. Conf. IEEE Int. Conf. on Electrical Insulation, Philadelphia, USA, 1982, pp. 175178.
    5. 5)
      • 15. Veréb, L., Osmokrovic, P., Vujisic, M., et al: ‘Prospects of constructing 20 kV asynchronous motors’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (1), pp. 251256.
    6. 6)
      • 17. ‘Wevopur 552 fl casting resin datasheet’. Available at https://www.wevo-chemie.de/fileadmin/PDF_downloads/Wevo_Wevopur_EN_10_2018.pdf, accessed October 2019.
    7. 7)
      • 20. Barrios, E.L., Urtasun, A., Ursúa, A., et al: ‘High-frequency power transformers with foil windings: maximum interleaving and optimal design’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 57125723.
    8. 8)
      • 14. Seltzman, A.H., Nonn, P.D., Anderson, J.K.: ‘Design and modeling of nanocrystalline iron core resonant transformers for pulsed power applications’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (4), pp. 11531160.
    9. 9)
      • 12. Thummala, P., Schneider, H., Zhang, Z., et al: ‘Investigation of transformer winding architectures for high-voltage (2.5 kV) capacitor charging and discharging applications’, IEEE Trans. Power Electron., 2016, 31, (8), pp. 57865796.
    10. 10)
      • 11. Ziomek, W., Vijayan, K., Boyd, D., et al: ‘High voltage power transformer insulation design’. Proc. Int. Conf. Electrical Insulation Conf. (EIC), Annapolis, USA, 2011, pp. 211215.
    11. 11)
      • 13. Jaritz, M., Biela, J.: ‘Isolation design of a 14.4 kV, 100 kHz transformer with a high isolation voltage (115 kV)’. Proc. Int. Conf. IEEE Int. Power Modulator and High Voltage Conf. (IPMHVC), San Francisco, USA, 2016, pp. 7378.
    12. 12)
      • 6. Collins, M., Martins, C.: ‘A modular and compact long pulse modulator based on the SML topology for the ESS Linac’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 22592267.
    13. 13)
      • 10. Zhang, Z., Tan, X.: ‘Review of high power pulse transformer design’, Phys. Procedia., 2012, 32, pp. 566574.
    14. 14)
      • 4. Boyle, M.: ‘L3 L6200 multibeam IOT for the European spallation source’, IEEE Trans. Electron Devices, 2018, 65, (6), pp. 20962100.
    15. 15)
      • 7. Blume, S., Jaritz, M., Biela, J.: ‘Design and optimization procedure for high-voltage pulse power transformers’, IEEE Trans. Plasma Sci., 2015, 43, (10), pp. 33853391.
    16. 16)
      • 8. Ouyang, Z., Zhang, J., Hurley, W.G.: ‘Calculation of leakage inductance for high-frequency transformers’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 57695775.
    17. 17)
      • 3. Kirshner, M.: ‘Super power IOT for the European spallation source’. Proc. Int. Conf. IEEE Int. Vacuum Electronics Conf. (IVEC), Beijing, China, 2015, pp. 12.
    18. 18)
      • 16. IEC 60840:2011: ‘Power cables with extruded insulation and their accessories for rated voltages above 30 kV (Um = 36 kV) up to 150 kV (Um = 170 kV)’, 2011.
    19. 19)
      • 18. Wilson, P.R., Brown, A.D.: ‘Effective modeling of leakage inductance for use in circuit simulation’. Proc. Int. Conf. IEEE Applied Power Electronics Conf., Austin, USA, 2008, pp. 391395.
    20. 20)
      • 9. Liu, Y., Gu, M., Yuan, Q., et al: ‘Design a high power pulse transformer for c-band klystron modulator’. Proc. Int. Conf. Ninth Int. Particle Accelerator Conf. IPAC18, Vancouver, Canada, 2018, pp. 38753877.
    21. 21)
      • 2. McGinnis, D., Lindroos, M.: ‘The European spallation source’. Proc. Int. Conf. IEEE 14th Int. Vacuum Electronics Conf. (IVEC), Paris, France, 2013, pp. 12.
    22. 22)
      • 1. Garoby, R., Danared, H., Alonso, I., et al: ‘2018 phys. Scr. 93 014001’, Phys. Scr., 2018, 93, (12), pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0877
Loading

Related content

content/journals/10.1049/iet-epa.2019.0877
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address