access icon free Reduced inverters fed BDCM drives: an attempt to improve cost-effectiveness, compactness and reliability in hybrid vehicles

Following the climatic changes, there is a universal commitment to reduce greenhouse gas emissions, especially those due to mobility. A particular interest is addressed to hybrid propulsion systems, which are currently considered as viable candidates for a sustainable mobility. Within this commitment, the study proposes an approach to improve the cost-effectiveness, compactness and reliability of the electric drive unit of hybrid propulsion systems. This is achieved thanks to different associations of brushless DC motors (BDCMs) and reduced topologies of DC/AC converters such as the four switch inverter and three switch inverter. A special attention is focused upon the analysis of the sequences and commutations characterising the six-phase and three-phase BDCM drive operation. Implementation schemes of dedicated control strategies are given. Moreover, a comparison of selected features related to the ratings of the investigated BDCM drives is carried out and commented. Experimental results are provided to validate the performances of a reduced structure inverter fed three-phase BDCM under the dedicated control strategy.

Inspec keywords: invertors; DC motor drives; brushless DC motors; electric drives; machine control

Other keywords: three-phase BDCM; greenhouse gas emissions; universal commitment; six-phase; hybrid vehicles; climatic changes; sustainable mobility; investigated BDCM drives; viable candidates; reliability; compactness; dedicated control strategy; hybrid propulsion systems; brushless DC motors; reduced inverters; reduced structure inverter; electric drive unit; switch inverter

Subjects: d.c. machines; Power convertors and power supplies to apparatus; Control of electric power systems; Drives

References

    1. 1)
      • 16. Masmoudi, M., El Badsi, B., Masmoudi, A., ‘DTC of B4-inverter-fed BLDC motor drives with reduced torque ripple during sector-to-sector commutations’, IEEE Trans. Power Electron., 2013, 29, (9), pp. 48554865.
    2. 2)
      • 27. Hernandez, M., Messagie, M., Hegazy, O., et al: ‘Environmental impact of traction electric motors for electric vehicles applications’, Int. J. Life. Cycle. Assess., 2017, 22, (1), pp. 5465.
    3. 3)
      • 51. Ben Rhouma, A., Masmoudi, A.: ‘Torque and speed estimators to be implemented in a control strategy dedicated to TSTPI-fed BDCM drives’. 7th Int. Multi-Conf. Systems Signals and Devices (SSD), Amman, Jordan, 2010, pp. 16.
    4. 4)
      • 10. Wang, H., Yang, W., Chen, Y., et alOverview of hybrid electric vehicle trend’, In AIP Conference Proceedings, 2018, 1955, (1), p. 040160Publishing.
    5. 5)
      • 14. Nykvist, B., Nilsson, M.: ‘Rapidly falling costs of battery packs for electric vehicles’, Nat. Clim. Chang, 2015, 5, (4), p. 329.
    6. 6)
      • 50. Bianchi, N., Dai Pre, M.: ‘Use of the star of slots in designing fractional-slot single-layer synchronous motors’, Proc. IEE Electr. Power Appl., 2006, 153, (3), pp. 459466.
    7. 7)
      • 1. Chris, M., Masrur, M.A.: ‘Hybrid electric vehicles: principles and applications with practical perspectives’ (John Wiley and Sons, Hoboken, NJ, USA, 2017).
    8. 8)
      • 30. Lee, B.K., Kim, T.H., Ehsani, M.: ‘On the feasibility of four-switch three-phase BLDC motor drives for low commercial applications: topology and control’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 164172.
    9. 9)
      • 5. Mirzaeinejad, H., Mirzaei, M., Kazemi, R.: ‘Enhancement of vehicle braking performance on split-roads using optimal integrated control of steering and braking systems’, Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dynamics, 2016, 230, (4), pp. 401415.
    10. 10)
      • 23. Levi, E.: ‘Multiphase electric machines for variable-speed applications’, IEEE Trans. Ind. Electron., 2008, 55, (5), pp. 18931909.
    11. 11)
      • 32. Diab, M.S., Elserougi, A., Massoud, A.M., et al: ‘A four-switch three-phase SEPIC-based inverter’, IEEE Trans. Power Electron., 2014, 30, (9), pp. 48914905.
    12. 12)
      • 11. Zhu, Z.Q.: ‘Fractional slot permanent magnet brushless machines and drives for electric and hybrid propulsion systems’. (plenary Session) in CD-ROM Fourth Int. Conf. and Exhibition on Ecological Vehicles and Renewable Energies, Monte-Carlo, Monaco, March 2009.
    13. 13)
      • 39. Evans, P.D., Dodson, R.C., Eastham, J.F.: ‘Sinusoidal pulse width modulation strategy for the delta inverter’, IEEE Trans. Ind. Appl., 1984, 3, (3), pp. 651655.
    14. 14)
      • 15. Placke, T., Kloepsch, R., Dühnen, S., et al: ‘Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density’, J. Solid State Electrochem., 2017, 21, (7), pp. 19391964.
    15. 15)
      • 37. El-Antably, A.M., Ben Rhouma, A., Masmoudi, A., et al: ‘Control device for driving a brushless dc motor’, US Patent 7643733, 2010.
    16. 16)
      • 44. Guermazi, A., Sahbi, M., Masmoudi, A., et al: ‘On the analysis and control of four-switch three-phase inverter fed brushless motor drives’, Inter. J. for Comput. Math. Electr. Electron. Eng., 2007, 26, (5), pp. 12471261.
    17. 17)
      • 18. El Badsi, B., Ben Rhouma, A., Driss, A., et al: ‘On the potentialities of reduced structure inverters integrated in automotive electric motor drives’. 2009 8th Int. Symp. on Advanced Electromechanical Motion Systems and Electric Drives Joint Symp., Lille, France, 2009, pp. 16.
    18. 18)
      • 3. Ullah, M.H., Gunawan, T.S., Sharif, M.R., et al: ‘Design of environmental friendly hybrid electric vehicle’. Int. Conf. on Computer and Communication Engineering (ICCCE),on IEEE, Kuala Lumpur, Malaysia, 2012, pp. 544548.
    19. 19)
      • 47. El-Refaie, A.M., Jahns, T.M., McCleer, P.J., et al: ‘Experimental verification of optimal flux weakening in surface PM machines using concentrated windings’, IEEE Trans. Ind. Appl., 2006, 21, (2), pp. 362369.
    20. 20)
      • 48. Bianchi, N., Dai Pre, M., Grezzani, G., et al: ‘Design considerations on fractional-slot fault-tolerant synchronous motors’. Proc. IEEE Int. Electrical Machines and Drives Conf. (IEMDC), San Antonio, USA, 2005, pp. 902909.
    21. 21)
      • 28. Ping, L.I.U., He-ping, L.I.U.: ‘Application of z-source inverter for permanent-magnet synchronous motor drive system for electric vehicles’, Procedia Eng., 2011, 15, pp. 309314.
    22. 22)
      • 2. Sabri, M.F.M., Danapalasingam, K.A., Rahmat, M.F.: ‘A review on hybrid electric vehicles architecture and energy management strategies’, Renew. Sust. Energy Rev., 2016, 53, pp. 14331442.
    23. 23)
      • 33. Zaky, M.S., Metwaly, M.K: ‘A performance investigation of a four-switch three-phase inverter-fed IM drives at low speeds using fuzzy logic and PI controllers’, IEEE Trans. Power Electron., 2016, 32, (5), pp. 37413753.
    24. 24)
      • 7. Ngo, H.T., Sheu, K.B., Chen, Y.C., et al: ‘Design and analysis of a novel series-parallel hybrid transmision’. The Proc. of the JSME Int. Conf. on motion and power transmissions, The Japan Society of Mechanical Engineers, Kyoto, Japan, 2017, pp. 410.
    25. 25)
      • 46. Ben Hamadou, G., Masmoudi, A., Abdennadher, I., et al: ‘On the design of a single stator dual rotor permanent magnet machine’, IEEE Trans. Mag., 2009, 45, (1), pp. 127132.
    26. 26)
      • 12. Sulaiman, E., Kosaka, T., Matsui, N., ‘High power density design of 6-slot-8-pole hybrid excitation flux switching machine for hybrid electric vehicles’, IEEE Trans. Magn., 2011, 47, (10), pp. 44534456.
    27. 27)
      • 8. Kebriaei, M., Niasar, A.H., Asaei, B.: ‘Hybrid electric vehicles: an overview’. Int. Conf. on Connected Vehicles and Expo (ICCVE), Shenzhen, People's Republic of China, 2015, pp. 299305.
    28. 28)
      • 45. Ben Rhouma, A., Masmoudi, A., Elantably, A.: ‘On the analysis and control of a three-switch three-phase inverter-fed brushless DC drive’, Inter. J. for Comput. Math. Electr. Electron. Eng., 2007, 26, (1), pp. 183200.
    29. 29)
      • 26. Dwari, S., Parsa, L.: ‘Optimum fault-tolerant control of multi-phase permanent magnet machines for open-circuit and short-circuit faults’. APEC 07-Twenty-Second Annual IEEE Applied Power Electronics Conf. and Exposition IEEE, Anaheim, CA, USA, 2007, pp. 14171422.
    30. 30)
      • 49. Bianchi, N., Bolognani, S.: ‘Design techniques for reducing the cogging torque in surface-mounted PM motors’, IEEE Trans. Ind. Appl., 2002, 38, (2), pp. 12591265.
    31. 31)
      • 38. Evans, P.D., Dodson, R.C., Eastham, J.F.: ‘Delta inverter’, IEE Proceedings − B, 1980, 127, (6), pp. 333340.
    32. 32)
      • 34. Zhu, C., Zeng, Z., Zhao, R.: ‘Comprehensive analysis and reduction of torque ripples in three-phase four-switch inverter-fed PMSM drives using space vector pulse-width modulation’, IEEE Trans. Power Electron., 2016, 32, (7), pp. 54115424.
    33. 33)
      • 42. Ben Rhouma, A., Masmoudi, A.: ‘Delta-inverter fed fractional-slot six-phase brushless DC motors: analysis, control, and fault-tolerance capability’, COMPEL-Int. J. Comput. Math. Electr. Electron. Eng., 2011, 31, (1), pp. 154169.
    34. 34)
      • 13. Cano, Z.P., Banham, D., Ye, S., et al: ‘Batteries and fuel cells for emerging electric vehicle markets’, Nature Energy, 2018, 3, (4), pp. 279289.
    35. 35)
      • 31. De Rossiter Corrêa, M.B., Jacobina, C.B., da Silva, E.R.C., et al: ‘A general PWM strategy for four-switch three-phase inverters’, IEEE Trans. Power Electron., 2006, 21, (6), pp. 16181627.
    36. 36)
      • 6. Nikowitz, M.: ‘Advanced hybrid and electric vehicles’, in ‘System optimization and vehicle integration’ (Springer, Switzerland, 2016), pp. 1545.
    37. 37)
      • 17. Zeng, Z., Zhu, C., Jin, X., et al: ‘Hybrid space vector modulation strategy for torque ripple minimization in three-phase four-switch inverter-fed PMSM drives’, IEEE Trans. Ind. Electron., 2016, 64, (3), pp. 21222134.
    38. 38)
      • 52. Driss, A., Ben Rhouma, A., El Badsi, B., et al: ‘On the development of a test bench dedicated for the investigation of the features of a Delta-inverter fed BDCM drive’. 2010 Seventh Int. Conf. and Exhibition on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 2010.
    39. 39)
      • 41. El Badsi, B., Bouzidi, B., Masmoudi, A.: ‘DTC scheme for a four-switch inverter-fed induction motor emulating the six-switch inverter operation’, IEEE Trans. Power Electron., 2012, 28, (7), pp. 35283538.
    40. 40)
      • 9. Wolfram, P., Lutsey, N.: ‘Electric vehicles: literature review of technology costs and carbon emissions’. The Int. Council on Clean Transportation, Washington, DC, USA, 2016, pp. 123.
    41. 41)
      • 40. Alouane, A., Ben Rhouma, A., Khedher, A.: ‘FPGA implementation of a new DTC strategy dedicated to Delta inverter-fed BLDC motor drives’, Electr. Power Compon. Syst., 2018, 46, (6), pp. 688700.
    42. 42)
      • 29. Chau, K.T., Li, W.L.: ‘Overview of electric machines for electric and hybrid vehicles’, Int. J. Veh. Design: J. Veh. Eng., Autom. Technol. Compon., 2014, 64, (1), pp. 4671.
    43. 43)
      • 43. Ben Rhouma, A., Masmoudi, A.: ‘Four-swith inverter fed BDCM drives: a survey’. 2011 Eighth Int. Conf. and Exhibition on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 2011.
    44. 44)
      • 21. Baltatanu, A., Florea, M.L.: ‘Multiphase machines used in electric vehicles propulsion’. Proc. of the Int. Conf. on Electronics, Computers and Artificial Intelligence-ECAI, Pitesti, Romania, 2013, pp. 16.
    45. 45)
      • 20. Schofield, N., Niu, X., Beik, O.: ‘Multiphase machines for electric vehicle traction’. 2014 IEEE Transportation Electrification Conf. and Expo (ITEC), Dearborn, MI, USA, 2014, pp. 16.
    46. 46)
      • 35. Alouane, A., Rhouma, A.B., Hamouda, M., et al: ‘Efficient FPGA-based real-time implementation of an SVPWM algorithm for a delta inverter’, IET Power Electron., 2018, 11, (9), pp. 16111619.
    47. 47)
      • 4. Chan, C.C: ‘Overview of electric, hybrid, and fuel cell vehicles’, Encyclopedia of Autom. Eng., 2014, 1, pp. 114.
    48. 48)
      • 24. Parsa, L.: ‘On advantages of multi-phase machines’. 31st Annual Conf. of IEEE Industrial Electronics Society, IECON, Raleigh, NC, USA, 2005, p. 6.
    49. 49)
      • 22. De Sousa, L., Silvestre, B., Bouchez, B.: ‘A combined multiphase electric drive and fast battery charger for electric vehicles’. IEEE Vehicle Power and Propulsion Conf., Lille, France, 2010, pp. 16.
    50. 50)
      • 25. Casadei, D., Mengoni, M., Serra, G., et al: ‘Optimal fault-tolerant control strategy for multi-phase motor drives under an open circuit phase fault condition’. 2008 18th Int. Conf. on Electrical Machines, Vilamoura, Portugal, 2008, pp. 16.
    51. 51)
      • 19. Trzynadlowski, A.M., Legowski, S.: ‘Characteristics of the delta inverter with vector pulse width modulation’, Int. J. Electron., 1994, 76, (6), pp. 12051219.
    52. 52)
      • 36. Sandoval, J.J., Ramos-Ruiz, J., Daniel, M., et al: ‘A new delta inverter system for grid integration of large scale photovoltaic power plants’. 2014 IEEE Applied Power Electronics Conf. and Exposition-APEC, Fort Worth, TX, USA, 2014, pp. 12551262.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0823
Loading

Related content

content/journals/10.1049/iet-epa.2019.0823
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading