access icon free Study of suppression of vibration and noise of PMSM for electric vehicles

Zeroth-order spatial electromagnetic force wave has been regarded as one of the main sources for electromagnetic vibration and noise of integer slot multipole permanent magnet synchronous machine (PMSM) used in electric vehicles. In this study, the 48-slot-8-pole built-in permanent magnet synchronous motor for a vehicle was taken as an example. The main sources and characteristic parameters (frequency and amplitude) of the zeroth-order force wave of the integer slot multipole PMSM were presented. Based on this, a method of stator and rotor structure optimisation was proposed to effectively reduce magnitudes of vibration and noise for the machine by increasing the natural frequency and reducing the harmonic content and amplitude of electromagnetic force waves. The comparison of the noise reduced machine with the initial design was experimentally validated.

Inspec keywords: electric vehicles; vibrations; synchronous machines; permanent magnet machines; finite element analysis; electromagnetic forces; rotors; permanent magnet motors; stators; synchronous motors

Other keywords: electromagnetic force waves; zeroth-order spatial electromagnetic force wave; electric vehicles; stator; 48-slot-8-pole; harmonic content; integer slot multipole permanent magnet synchronous machine; permanent magnet synchronous motor; zeroth-order force wave; rotor structure optimisation; integer slot multipole PMSM; electromagnetic vibration

Subjects: d.c. machines; Transportation; a.c. machines; Synchronous machines; Finite element analysis

References

    1. 1)
      • 4. Islam, R., Husain, I., Fardoun, A., et al: ‘Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction’, IEEE Trans. Ind. Appl., 2009, 45, (1), pp. 152160.
    2. 2)
      • 15. Nakano, M., Morita, Y., Matsunaga, T.: ‘Reduction of cogging torque due to production tolerances of rotor by using dummy slots placed partially in axial direction’, IEEE Trans. Ind. Appl., 2015, 51, (6), pp. 43724382.
    3. 3)
      • 16. Wu, S., Zuo, S., Zhang, Y.: ‘Optimization for electromagnetic noise reduction in claw pole alternator by rotor claw chamfering’, IEEE Trans. Ind. Electron., 2018, 65, (12), pp. 93259335.
    4. 4)
      • 13. Huang, S., aydin, M., liPo, T.A.: ‘Electromagnetic vibration and noise assessment forces for surface mounted PM machines’, Proc. IEEE Power Eng. Soc. Summer Meeting, 2002, 3, (15-19), pp. 14171426.
    5. 5)
      • 20. Boesing, M., De Doncker, R.W.: ‘Exploring a vibration synthesis process for the acoustic characterization of electric drives’, IEEE Trans. Ind. Appl., 2012, 48, (1), pp. 7078.
    6. 6)
      • 9. Wang, D., Wang, X., Yang, Y., et al: ‘Optimization of magnetic pole shifting to reduce cogging torque in solid-rotor permanent-magnet synchronous motors’, IEEE Trans. Magn., 2010, 46, (5), pp. 12281234.
    7. 7)
      • 22. Hofmann, A., Qi, F., Lange, T., et al: ‘The breathing mode-shape 0:Is It the main acoustic issue in the PMSMs of today's electric vehicles?’. 2014 17th Int. Conf. on Electrical Machines and Systems (ICEMS), 22–25 October 2014, pp. 30673073.
    8. 8)
      • 3. Zhu, L., Jiang, S.Z., Zhu, Z.Q., et al: ‘Analytical methods for minimizing cogging torque in permanent-magnet machines’, IEEE Trans. Magn., 2009, 45, (4), pp. 20232031.
    9. 9)
      • 28. Yamazaki, K., Ishigami, H.: ‘Rotor-shape optimization of Interior-permanent-magnet motors to reduce harmonic iron losses’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 6169.
    10. 10)
      • 10. Wang, D., Wang, X., Jung, S.Y.: ‘Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths’, IEEE Trans. Magn., 2013, 49, (5), pp. 22952298.
    11. 11)
      • 8. Wang, D., Wang, X., Kim, M.K., et al: ‘Integrated optimization of two design techniques for cogging torque reduction combined with analytical method by a simple gradient descent method’, IEEE Trans. Magn., 2012, 48, (8), pp. 22652276.
    12. 12)
      • 23. Valavi, M., Le Besnerais, J., Nysveen, A.: ‘An investigation of zeroth-order radial magnetic forces in low-speed surface-mounted permanent magnet machines’, IEEE Trans. Magn., 2016, 52, (8), pp. 16.
    13. 13)
      • 11. Ren, W., Xu, Q., Li, Q.: ‘Reduction of cogging torque and torque ripple in Interior PM machines according to asymmetrical V-type rotor design’, IEEE Trans. Magn., 2016, 52, (7), pp. 15.
    14. 14)
      • 27. Yamazaki, K., Togashi, Y., Ikemi, T., et al: ‘Reduction of inverter carrier harmonic losses in interior permanent magnet synchronous motors by optimizing rotor and stator shapes’, IEEE Trans. Ind. Appl., 2019, 55, (1), pp. 306315.
    15. 15)
      • 25. Xiao-hua, L., Su-rong, H., Qi, Z.: ‘Analysis of natural frequency of stator structure of permanent magnet synchronous motor for electric vehicle’. Proc. of the CSEE, 2017, 37, (8), pp. 23832390.
    16. 16)
      • 29. Liu, X., Chen, H., Zhao, J., et al: ‘Research on the performances and parameters of interior PMSM used for electric vehicles’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 35333545.
    17. 17)
      • 24. Gieras, J.F, Wang, C, Lai, J.C.: ‘Noise of polyphase electric motors’ (CRC/Taylor & Francis, Florida, USA, 2006).
    18. 18)
      • 14. Lee, S.H., Han, K.K., Ahn, H.J., et al: ‘A study on reduction of vibration based on decreased cogging torque for interior type permanent magnet motor’. Industry Applications Society Annual Meeting, 2008, IAS'08, Edmonton, AB, Canada, 2008, pp. 16.
    19. 19)
      • 21. Li, X., Huang, S., Zhang, Q., et al: ‘Electromagnetic noise assessment for EV's PM driving machines’. 2014 17th Int. Conf. on Electrical Machines and Systems (ICEMS), Hangzhou, People's Republic of China, October 2014, pp. 15521555.
    20. 20)
      • 7. Dorrell, D.G., Hsieh, M., Popescu, M., et al: ‘A review of the design issues and techniques for radial-flux brushless surface and internal rare-earth permanent-magnet motors’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 37413757.
    21. 21)
      • 5. Roger-Folch, J., Joares, V.J.L., Lázaro, E.G.: ‘Analysis of skewed slots in induction machines by using 2D finite element method’, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 1998, 17, (2), pp. 212218.
    22. 22)
      • 19. Boesinga, M., Kasperb, K.A., De Donckerc, R.W.: ‘Vibration excitation in an electric traction motor for a hybrid electric vehicle’. 37th Int. Congress and Exposition on Noise Control Engineering, Shanghai, People's Republic of China, October 2008, pp. 2629.
    23. 23)
      • 30. Yang, Y., Castano, S.M., Yang, R., et al: ‘Design and comparison of interior permanent magnet motor topologies for traction applications’, IEEE Trans. Transp. Electr.2017, 3, (1), pp. 8697.
    24. 24)
      • 6. Kalokiris, G.D., Kefalas, T.D., Kladas, A.G., et al: ‘Special air-gap element for 2-D FEM analysis of electrical machines accounting for rotor skew’, IEEE Trans. Magn., 2005, 41, (5), pp. 20202023.
    25. 25)
      • 18. Deng, W., Zuo, S.: ‘Electromagnetic vibration and noise of the permanent-magnet synchronous motors for electric vehicles: an overview’, IEEE Trans. Transp. Electrification, 2019, 5, (1), pp. 5970.
    26. 26)
      • 26. Yamazaki, K., Narushima, H.: ‘Rotor shape optimization of Interior permanent magnet synchronous motors with concentrated windings by considering End-leakage flux’. The 2018 Int. Power Electronics Conf. (IPEC-Niigata2018-ECCE Aisa), Niigata, Japan, May 2018, pp. 2024.
    27. 27)
      • 17. Ying, X., Fei, L., Zhiwei, L., et al: ‘Optimized design and research of vibration reduction with an Interior permanent magnet synchronous’, Proc. CESS, 2017, 37, (18), pp. 54375545.
    28. 28)
      • 2. Zhu, Z.Q., Ruangsinchaiwanich, S., Schofield, N., et al: ‘Reduction of cogging torque in interior-magnet brushless machines’, IEEE Trans. Magn., 2003, 39, (5), pp. 32383240.
    29. 29)
      • 12. Chung, S.U., Moon, S.H., Kim, D.J., et al: ‘Development of a 20-pole-24-slot SPMSM with consequent pole rotor for in-wheel direct drive’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 302309.
    30. 30)
      • 1. Zhu, Z.Q., Howe, D.: ‘Influence of design parameters on cogging torque in permanent magnet machines’, IEEE Trans. Energy Convers., 2002, 15, (4), pp. 407412.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0805
Loading

Related content

content/journals/10.1049/iet-epa.2019.0805
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading