Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and analysis of E-core PM-assisted switched reluctance motor

This study proposes a modified structure of the E-core permanent magnet (PM) assist switched reluctance motor by relocating the PM blades inside the stator core. For this purpose, the PMs are removed from the stator poles and placed slantwise inside the yoke. The proposed yoke-PM assist structure is characterised with higher average torque and a lower torque ripple with respect to the conventional pole-PM assist structure. An analytical approach based on the magnetic equivalent circuit is applied at the preliminary design stage to predict the performance of the motor. Based on the presented analytical modelling, the physical dimensions of the motor are optimised via a genetic algorithm to maximise the motor torque and the overall steady state performance. For further verifications, the finite-element analysis simulation results are verified by the experimental tests on the motor prototype.

References

    1. 1)
      • 31. Wang, Y., Deng, Z.: ‘Comparison of switched-flux permanent magnet machines with non-overlapping concentrated winding for open-winding generator system’, IET Electr. Power Appl., 2017, 11, (2), pp. 242251.
    2. 2)
      • 28. Ding, H., Liu, M., Sixel, W., et al: ‘Performance analysis of C-core and E-core flux switching permanent magnet machine with airfoil shaped rotor’. IEEE Transportation Electrification Conf. and Expo (ITEC), Long Beach, CA, USA, 2018.
    3. 3)
      • 20. Abbasian, M., Moallem, M., Fahimi, B.: ‘Double-stator switched reluctance machines (DSSRM): fundamentals and magnetic force analysis’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 589597.
    4. 4)
      • 33. Raihan, M.A.H., Baker, N., Smith, K., et al: ‘Linear consequent pole Halbach array flux reversal machine’, IET J. Eng., 2019, 2019, (17), pp. 45604565.
    5. 5)
      • 5. Lee, J.W., Kim, H.S., Kwon, B.I., et al: ‘New rotor shape design for minimum torque ripple of SRM using FEM’, IEEE Trans. Magn., 2004, 40, (2), pp. 754757.
    6. 6)
      • 19. Abbasian, M., Fahimi, B., Moallem, M.: ‘High torque double-stator switched reluctance machine for electric vehicle propulsion’. 2010 IEEE Vehicle Power and Propulsion Conf. (VPPC), Lille, France, 2010, pp. 15.
    7. 7)
      • 25. Lindner, A., Hahn, I.: ‘Design of an E-core flux-switching permanent magnet machine with large air-gap’. IEEE Int. Electric Machines & Drives Conf. (IEMDC), Coeur d'Alene, ID, USA, May 2015.
    8. 8)
      • 1. Sahin, F., Ertan, H.B., Leblebicioglu, K.: ‘Optimum geometry for torque ripple minimization of switched reluctance motors’, IEEE Trans. Energy Convers., 2000, 15, (1), pp. 3039.
    9. 9)
      • 21. Asgar, M., Afjei, E.: ‘Radial force reduction in a new flat-type double-stator switched reluctance motor’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 141149.
    10. 10)
      • 17. Lobo, N.: ‘Doubly-salient permanent magnet flux-reversal-free-stator switched reluctance machines’, Virginia Tech, 2011.
    11. 11)
      • 16. Cho, J., Hur, J., Lee, C.: ‘Control scheme of a novel permanent-magnet-assisted switched reluctance machine’. 2013 Int. Conf. on Electrical Machines and Systems (ICEMS), Busan, Republic of Korea, 2013, pp. 615621.
    12. 12)
      • 38. Inderka, R., De Doncker, R.: ‘Simple average torque estimation for control of switched reluctance machines’. 9th Int. Conf. on Power Electronics and Motion Control EPE-PEMC, Kosice, Slovak Republic, 2000.
    13. 13)
      • 14. Masoumi, M., Mirsalim, M.: ‘E-core hybrid reluctance motor with permanent magnets inside stator common poles’, IEEE Trans. Energy Convers., 2018, 33, (2), pp. 826833.
    14. 14)
      • 30. Lindner, A., Hahn, I.: ‘Alternative ways of cooling an E-core flux switching permanent magnet machine with large air-gap’. The 42nd Annual Conf. of the IEEE Industrial Electronics Society (IECON), Florence, Italy, 2016.
    15. 15)
      • 23. Raihan, M.A.H., Baker, N.J., Smith, K.J., et al: ‘An E-core linear veriner hybrid permanent magnet machine with segmented translator for direct drive wave energy converter’. IEEE Int. Electric Machines and Drives Conf. (IEMDC), Miami, FL, USA, 2017.
    16. 16)
      • 2. Sheth, N.K., Rajagopal, K.R.: ‘Optimum pole arcs for a switched reluctance motor for higher torque with reduced ripple’, IEEE Trans. Magn., 2003, 39, (5), pp. 32143216.
    17. 17)
      • 37. Boldea, I., Nasar, S.A.: ‘Electric drives’ (CRC Press, USA, 2016).
    18. 18)
      • 10. Situ, L.: ‘Electric vehicle development: the past, present & future’. 3rd Int. Conf. on Power Electronics Systems and Applications, 2009. PESA 2009, Hong Kong, People's Republic of China2009, pp. 13.
    19. 19)
      • 3. Sheth, N.K., Rajagopal, K.R.: ‘Torque profiles of a switched reluctance motor having special pole face shapes and asymmetric stator poles’, IEEE Trans. Magn., 2004, 40, (4), pp. 20352037.
    20. 20)
      • 7. Ma, C., Qu, L.: ‘Multi-objective optimization of switched reluctance motors based on design of experiments and particle swarm optimization’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 11441153.
    21. 21)
      • 13. Hwang, H., Hur, J., Lee, C.: ‘Novel permanent-magnet-assisted switched reluctance motor (I): concept, design, and analysis’. 2013 Int. Conf. on Electrical Machines and Systems (ICEMS), Busan, Republic of Korea, 2013, pp. 602608.
    22. 22)
      • 34. Fitzgerald, A., Kingsley, C., Umans, S.: ‘Electric machinery’ (McGraw-Hill, USA, 2003).
    23. 23)
      • 4. Sheth, N.K., Rajagopal, K.R.: ‘Variations in overall developed torque of a switched reluctance motor with air-gap non-uniformity’, IEEE Trans. Magn., 2005, 41, (10), pp. 39733975.
    24. 24)
      • 29. Li, Y., Xu, W.: ‘Optimization and performance analysis of E-core and C-core flux-switching permanent-magnet machines for electric vehicle applications’. 2014 17th Int. Conf. on Electrical Machines and Systems (ICEMS), Hangzhou, China, 2014.
    25. 25)
      • 9. Xue, X.D., Cheng, K.W.E., Ng, T.W., et al: ‘Multi-objective optimization design of in-wheel switched reluctance motors in electric vehicles’, IEEE Trans. Ind. Electron., 2010, 57, (9), pp. 29802987.
    26. 26)
      • 39. Chen, H., Han, G., Yan, W., et al: ‘Modeling of a switched reluctance motor under stator winding fault condition’, IEEE Trans. Appl. Supercond., 2016, 26, (4), Art. no. 0604106.
    27. 27)
      • 12. Lee, C., Krishnan, R.: ‘New designs of a two-phase e-core switched reluctance machine by optimizing the magnetic structure for a specific application: concept, design, and analysis’, IEEE Trans. Ind. Appl., 2009, 45, (5), pp. 18041814.
    28. 28)
      • 6. Ma, C., Qu, L.: ‘Design considerations of switched reluctance motors with bipolar excitation for low torque ripple applications’. Proc. IEEE Energy Conversion Congress Exposition, Denver, CO, USA, September 2013, pp. 926933.
    29. 29)
      • 22. Husain, T., Sozer, Y., Husain, I., et al: ‘Design of a modular E-core flux concentrating axial flux machine’. IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015.
    30. 30)
      • 11. Chau, K., Chan, C., Liu, C.: ‘Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 22462257.
    31. 31)
      • 8. Choi, Y.K., Yoon, H.S., Koh, C.S.: ‘Pole-shape optimization of a switched-reluctance motor for torque ripple reduction’, IEEE Trans. Magn., 2007, 43, (4), pp. 17971800.
    32. 32)
      • 18. Hwang, H., Hur, J., Lee, C.: ‘Design and analysis of a permanent-magnet-assisted switched reluctance motor’, J. Electr. Eng. Technol., 2014, 9, (6), pp. 22092217.
    33. 33)
      • 32. Zhu, Z.Q., Al-Ani, M., Lee, B., et al: ‘Comparative study of the electromagnetic performance of switched flux permanent magnet machines’, IET Electr. Power Appl., 2015, 9, (4), pp. 297306.
    34. 34)
      • 26. Zakaria, S.N.U., Sulaiman, E.: ‘Magnetic flux analysis of E-core hybrid excitation flux switching motor with various topologies’. IEEE Asia-Pacific Conf. on Applied Electromagnetics (APACE), Johor, Malaysia, December 2014.
    35. 35)
      • 27. Rani, J.A., Sulaiman, E., Naufal, S.M., et al: ‘A study of single-phase E-core hybrid excitation flux switching motor’. 4th IET Clean Energy and Technology Conf. (CEAT), Kuala Lumpur, Malaysia, 2016.
    36. 36)
      • 24. Chen, J.T., Zhu, Z.Q., Iwasaki, S., et al: ‘A novel E-core switched-flux PM brushless AC machine’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12731282.
    37. 37)
      • 35. Tang, Y., Paulides, J.J.H., Lomonova, E.A.: ‘Automated design of DC-excited flux-switching in-wheel motor using magnetic equivalent circuits’. Ninth Int. Conf. on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 2014.
    38. 38)
      • 15. Jeong, J., Her, J., Lee, C.: ‘Novel permanent-magnet-assisted switched reluctance motor (II): concept, design, and analysis’. 2013 Int. Conf. on Electrical Machines and Systems (ICEMS), Busan, Republic of Korea, 2013, pp. 609614.
    39. 39)
      • 36. Kokernak, J.M., Torrey, D.A.: ‘Magnetic circuit model for the mutually coupled switched-reluctance machine’, IEEE Trans. Magn., 2000, 36, (2), pp. 500507.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0767
Loading

Related content

content/journals/10.1049/iet-epa.2019.0767
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address