access icon free Modelling of axial-flux eddy-current couplers

Analytical models are widely employed in the design of electromagnetic devices. This study presents a flux-tube model for axial-flux eddy-current couplers with surface magnets. Thanks to the developed three-dimensional magnetic equivalent circuit, the proposed model is able to handle complex geometries and take into account all dimensional parameters and material properties such as iron saturation and permanent magnet (PM) characteristics. In addition, the associated practical design considerations including iron saturation, demagnetisation criteria, actual current paths, and heating conditions are analytically presented. Also, a three-dimensional finite-element analysis is utilised in the assessment of the model. Finally, a prototype is made to experimentally analyse the design and confirm analytical and numerical results.

Inspec keywords: magnetic flux; magnetic circuits; permanent magnet machines; equivalent circuits; eddy currents; finite element analysis; electromagnetic devices

Other keywords: material properties; associated practical design considerations including iron saturation; axial-flux eddy-current couplers; three-dimensional magnetic equivalent circuit; actual current paths; analytical models; surface magnets; account all dimensional parameters; flux-tube model

Subjects: a.c. machines; Electromagnetic induction; Finite element analysis; d.c. machines

References

    1. 1)
      • 31. Mohammadi, S., Mirsalim, M., Niazazari, M., et al: ‘A new interior permanent-magnet radial-flux eddy-current coupler’. Proc. 5th Power Electronics, Drive Systems and Technologies Conf., Tehran, Iran, 2014.
    2. 2)
      • 10. Sui, Y., Zheng, P., Liu, Y., et al: ‘Tubular unified magnetic-field flux-switching PMLM for free-piston energy converter’, IET Electr. Power Appl., 2019, 13, (5), pp. 625634.
    3. 3)
      • 20. Canova, A., Vusini, B.: ‘Design of axial eddy-current couplers’, IEEE Trans. Ind. Appl., 2003, 39, (3), pp. 17251733.
    4. 4)
      • 7. Golzarzadeh, M., Ganji, B.: ‘Analytical modelling of the linear switched reluctance motor with segmental translator’, IET Electr. Power Appl., 2019, 13, (4), pp. 527537.
    5. 5)
      • 29. Mouton, Z., Kamper, M.J.: ‘Modelling and optimal design of an eddy current coupling for slip-synchronous permanent magnet wind generators’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 33673376.
    6. 6)
      • 19. Lubin, T., Rezzoug, A.: ‘3-D analytical model for axial-flux eddy-current couplings and brakes under steady-state conditions’, IEEE Trans. Magn., 2015, 51, (10), pp. 112.
    7. 7)
      • 3. Song, T., Zhang, Z., Liu, H., et al: ‘Multi-objective optimisation design and performance comparison of permanent magnet synchronous motor for EVs based on FEA’, IET Electr. Power Appl., 2019, 13, (8), pp. 11571166.
    8. 8)
      • 5. Lubin, T., Mezani, S., Rezzoug, A.: ‘2-D exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots’, IEEE Trans. Magn., 2011, 47, (2), pp. 4794929.
    9. 9)
      • 26. Mohammadi, S., Mirsalim, M.: ‘Double-sided permanent-magnet radial-flux eddy-current couplers: three-dimensional analytical modeling, static and transient study, and sensitivity analysis’, IET Electr. Power Appl., 2013, 7, (9), pp. 665679.
    10. 10)
      • 18. Lubin, T., Rezzoug, A.: ‘Improved 3-D analytical model for axial-flux eddy-current couplings with curvature effects’, IEEE Trans. Magn., 2017, 53, (9), pp. 19.
    11. 11)
      • 24. Lubin, T., Mezani, S., Rezzoug, A.: ‘Simple analytical expressions for the force and torque of axial magnetic couplings’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 536546.
    12. 12)
      • 25. Lubin, T., Mezani, S., Rezzoug, A.: ‘Development of a 2D analytical model for the electromagnetic computation of axial-field magnetic gears’, IEEE Trans. Magn., 2013, 49, (11), pp. 55075521.
    13. 13)
      • 6. Wu, L.J., Zhu, Z.Q., Staton, D., et al: ‘An improved subdomain model for predicting magnetic field of surface-mounted permanent magnet machines accounting for tooth-tips’, IEEE Trans. Magn., 2011, 47, (6), pp. 16931704.
    14. 14)
      • 23. Shin, H., Choi, J., Cho, H., et al: ‘Analytical torque calculations and experimental testing of permanent magnet axial eddy current brake’, IEEE Trans. Magn., 2013, 49, (7), pp. 41524155.
    15. 15)
      • 32. Mohammadi, S., Mirsalim, M., Vaez-Zadeh, S., et al: ‘Sensitivity analysis and prototyping of a surface-mounted permanent-magnet axial-flux coupler’. Proc. 5th Power Electronics, Drive Systems and Technologies Conf., Tehran, Iran, 2014.
    16. 16)
      • 17. Dai, X., Liang, Q., Cao, J., et al: ‘Analytical modeling of axial-flux permanent magnet eddy current couplings with a slotted conductor topology’, IEEE Trans. Magn., 2016, 52, (2), pp. 115.
    17. 17)
      • 16. Tian, M., Zhao, W., Wang, X., et al: ‘Analysis on a novel flux adjustable permanent magnet coupler with a double-layer permanent magnet rotor’, IEEE Trans. Magn., 2018, 54, (11), pp. 15.
    18. 18)
      • 11. Gorginpour, H.: ‘Dual-stator consequent-pole vernier PM motor with improved power factor’, IET Electr. Power Appl., 2019, 13, (5), pp. 652661.
    19. 19)
      • 33. Russell, R.L., Norsworthy, K.H.: ‘Eddy current and wall losses in screened-rotor induction motors’, Proc. IEEE, 1958, 105, (A), pp. 163175.
    20. 20)
      • 8. Yang, Y., Chen, J., Yan, B., et al: ‘Analytical magnetic field prediction of flux switching machine with segmental rotor’, IET Electr. Power Appl., 2019, 13, (1), pp. 91100.
    21. 21)
      • 12. Yan, W., Chen, H., Liu, X., et al:Design and multi-objective optimisation of switched reluctance machine with iron loss’, IET Electr. Power Appl., 2019, 13, (4), pp. 435444.
    22. 22)
      • 1. Davarpanah, G., Mohammadi, S., Kirtley, J.: ‘A novel 8/10 two-phase switched reluctance motor with enhanced performance: analysis and experimental study’, IEEE Trans. Ind. Appl., 2019, 55, (4), pp. 34023410.
    23. 23)
      • 13. Ren, X., Sun, J., Peng, C., et al: ‘Analysis and design method of a combined radial–axial magnetic bearing based on asymmetric facto0lr’, IET Electr. Power Appl., 2019, 13, (5), pp. 686693.
    24. 24)
      • 27. Mohammadi, S., Mirsalim, M., Vaez-Zadeh, S.: ‘Nonlinear modeling of eddy-current couplers’, IEEE Trans. Energy Convers., 2013, 29, (1), pp. 224231.
    25. 25)
      • 28. Mohammadi, S., Mirsalim, M., Vaez-Zadeh, S., et al: ‘Analytical modeling and analysis of axial-flux interior permanent-magnet couplers’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 59405947.
    26. 26)
      • 15. Mohammadi, S., Mirsalim, M.: ‘Analytical design framework for torque and back-EMF optimization, and inductance calculation in double-rotor radial-flux air-cored permanent-magnet machines’, IEEE Trans. Magn., 2014, 50, (1), p. 8200316.
    27. 27)
      • 22. Pluk, K., Beek, T.V., Jansen, H., et al: ‘Modeling and measurements on a finite, rectangular, conducting plate in an eddy current damper’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 40614072.
    28. 28)
      • 4. Bahrami Kouhshahi, M., Acharya, V.M., Calvin, M., et al: ‘Designing and experimentally testing a flux-focusing axial flux magnetic gear for an ocean generator application’, IET Electr. Power Appl., 2019, 13, (8), pp. 12121218.
    29. 29)
      • 9. Bash, M., Pekarek, S.: ‘Modeling of salient-pole wound-rotor synchronous machines for population-based design’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 381392.
    30. 30)
      • 30. Mohammadi, S., Mirsalim, M., Vaez-Zadeh, S., et al: ‘Design analysis of a new axial-flux interior permanent-magnet coupler’. Proc. 5th Annual Int. Power Electronics, Drive Systems and Technologies Conf., Tehran, Iran, 2014, pp. 562567.
    31. 31)
      • 14. Kano, Y., Kosaka, T., Matsui, N.: ‘Simple nonlinear magnetic analysis for permanent-magnet motors’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12051214.
    32. 32)
      • 2. Aghazadeh, H., Afjei, E., Siadatan, A.: ‘Sizing and detailed design procedure of external rotor synchronous reluctance machine’, IET Electr. Power Appl., 2019, 13, (8), pp. 11051113.
    33. 33)
      • 21. Canova, A., Vusini, B.: ‘Analytical modeling of rotating eddy-current couplers’, IEEE Trans. Magn., 2005, 41, (1), pp. 2435.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0753
Loading

Related content

content/journals/10.1049/iet-epa.2019.0753
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading