Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design optimisation of an axial-flux reluctance magnetic coupling based on a two-dimensional semi-analytical model

In this study, design optimisation of an axial-flux reluctance magnetic coupling is presented. The optimal design procedure is based on a two-dimensional (2D) semi-analytical model defined at the mean radius combined with a multi-objective genetic algorithm (NSGA-II). In order to take into account the end-effects in the radial direction, a correction factor is defined to improve the torque and the axial-force determination. The obtained results are compared with those of 3D non-linear finite element simulations and experimental results. It is shown that the proposed semi-analytical model is very accurate and requires very little computing time.

References

    1. 1)
      • 11. Nagrial, M.H.: ‘Analysis and performance of variable reluctance (V. R.) torque coupler’. Proc. IEEE Conf. on Industrial Automation and Control Emerging Technology Applications, Taipei, Taiwan, 1995, pp. 136139.
    2. 2)
      • 20. Lubin, T., Mezani, S., Rezzoug, A.: ‘Exact analytical method for magnetic field computation in the air-gap of cylindrical electrical machines considering slotting effects’, IEEE Trans. Magn., 2010, 46, (4), pp. 10921099.
    3. 3)
      • 14. Wang, J., Lin, H., Fang, S., et al: ‘A general analytical model of permanent magnet eddy current couplings’, IEEE Trans. Magn., 2014, 50, (1), p. 8000109.
    4. 4)
      • 5. Li, K., Bird, J.Z., Acharya, V.M.: ‘Ideal radial permanent magnet coupling torque density analysis’, IEEE Trans. Magn., 2017, 53, (6), p. 8106304.
    5. 5)
      • 18. Zhu, Z.Q., Wu, L.J., Xia, Z.P.: ‘An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent magnet machines’, IEEE Trans. Magn., 2010, 46, (4), pp. 11001115.
    6. 6)
      • 6. Mohammadi, S., Mirsalim, M.: ‘Double-sided permanent-magnet radial-flux eddy-current couplers: three-dimensional analytical modeling, static and transient study, and sensitivity analysis’, IET Electr. Power Appl., 2013, 7, (9), pp. 665679.
    7. 7)
      • 4. Lubin, T., Mezani, S., Rezzoug, A.: ‘Simple analytical expressions for the force and torque of axial magnetic couplings’, IEEE Trans. Energy. Convers., 2012, 27, (2), pp. 536546.
    8. 8)
      • 3. Fontchastagner, J., Lefèvre, Y., Messine, F.: ‘Some co-axial magnetic couplings designed using an analytical model and an exact global optimization code’, IEEE Trans. Magn., 2009, 45, (3), pp. 14581461.
    9. 9)
      • 22. Lubin, T., Rezzoug, A.: ‘Improved 3-D analytical model for axial-flux eddy-current couplings with curvature effects’, IEEE Trans. Magn., 2017, 53, (9), p. 17121736.
    10. 10)
      • 19. Rahideh, A., Ghaffari, A., Barzegar, A., et al: ‘Analytical model of slotless brushless PM linear motors considering different magnetization patterns’, IEEE Trans. Energy Convers., 2018, 33, (4), pp. 17971804.
    11. 11)
      • 2. Charpentier, J.F., Lemarquand, G.: ‘Optimal design of cylindrical air-gap synchronous permanent magnet couplings’, IEEE Trans. Magn., 1999, 35, (2), pp. 10371046.
    12. 12)
      • 17. Dubas, F., Espanet, C.: ‘Analytical solution of the magnetic field in permanent-magnet motors taking into account slotting effect: no-load vector potential and flux density calculation’, IEEE Trans. Magn., 2009, 45, (5), pp. 20972109.
    13. 13)
      • 1. Hornreich, R.M., Shtrikman, S.: ‘Optimal design of synchronous torque couplers’, IEEE Trans. Magn., 1978, 14, (5), pp. 800802.
    14. 14)
      • 21. De la Barrière, O., Hlioui, S., Ben-Ahmed, H., et al: ‘3-D formal resolution of Maxwell equations for the computation of the no-load flux in an axial flux permanent-magnet synchronous machine’, IEEE Trans. Magn., 2012, 48, (1), pp. 128136.
    15. 15)
      • 10. Lubin, T., Rezzoug, A.: ‘3-D analytical model for axial-flux eddy current couplings and brakes under steady-state conditions’, IEEE Trans. Magn., 2015, 51, (10), p. 820371.
    16. 16)
      • 12. Ravaud, R., Lemarquand, G., Lemarquand, V., et al: ‘Permanent magnet couplings: field and torque three-dimensional expressions based on the Coulombian model’, IEEE Trans. Magn., 2009, 45, (4), pp. 19501958.
    17. 17)
      • 8. Li, Y., Lin, H., Tao, Q., et al: ‘Analytical analysis of an adjustable-speed permanent magnet eddy-current coupling with a non-rotary mechanical flux adjuster’, IEEE Trans. Magn., 2019, 55, (6), p. 18670107.
    18. 18)
      • 23. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. IEEE Proc. Conf. on Neural Networks, Perth, Australia, 1995, no. 4, pp. 19421948.
    19. 19)
      • 9. Aberoomand, V., Mirsalim, M., Fesharakifard, A.: ‘Design optimization of double-sided permanent-magnet axial eddy-current couplers for use in dynamic application’, IEEE Trans. Energy. Convers., 2019, 34, (2), pp. 909920.
    20. 20)
      • 16. Wu, W., Lovatt, H.C., Dunlop, J.B.: ‘Analysis and design optimisation of magnetic couplings using 3D finite element modelling’, IEEE Trans. Magn., 1997, 33, (5), pp. 40834085.
    21. 21)
      • 7. Wang, J., Zhu, J.: ‘A simple method for performance prediction of permanent magnet eddy current couplings using a new magnetic equivalent circuit model’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 24872495.
    22. 22)
      • 15. Dai, X., Liang, Q., Cao, J., et al: ‘Analytical modeling of axial-flux permanent magnet eddy current couplings with a slotted conductor topology’, IEEE Trans. Magn., 2016, 52, (2), p. 15720310.
    23. 23)
      • 13. Dolisy, B., Mezani, S., Lubin, T., et al: ‘A new analytical torque formula for axial field permanent magnets coupling’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 892899.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0746
Loading

Related content

content/journals/10.1049/iet-epa.2019.0746
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address