access icon free Study on fault diagnosis of broken rotor bars in squirrel cage induction motors: a multi-agent system approach using intelligent classifiers

A critical factor in industrial production maintenance is decision-making in fault diagnosis. Motor current signature analysis (MCSA) is an established condition-based maintenance method to make fault diagnosis in induction motors (IMs). The occurrence of multiple interacting faults, as well as emergent behaviour, can be tackled efficiently especially when MCSA is combined with distributed problem-solving artificial intelligence (AI) techniques. Therefore, in this study, an intelligent multi-agent system (MAS) is presented to make decisions on the fault conditioning of a three-phase squirrel cage IM. The incorporated agents represent different health conditions of the same IM, with faults that may occur in the rotor bars. All agents utilise an AI method, and use for training MCSA experimental data. A supervisor agent (SA) initially communicates with agents employing feed-forward artificial neural networks trained with the back-propagation algorithm and performs the final fault diagnosis by evaluating their responses. When a decision cannot be made on the fault type, the SA employs another agent that uses the k-nearest neighbour rule. The proposed method achieves high fault diagnosis accuracy. Its performance is also compared with results previously obtained from the same motor when an adaptive neuro-fuzzy inference system combined with a subtractive clustering method had been used.

Inspec keywords: maintenance engineering; squirrel cage motors; feedforward neural nets; fuzzy reasoning; condition monitoring; rotors; fault diagnosis; electric machine analysis computing; fuzzy neural nets; multi-agent systems

Other keywords: fault conditioning; distributed problem-solving AI methods; high fault diagnosis accuracy; fault type; final fault diagnosis; motor current signature analysis; intelligent multiagent system; condition-based maintenance method; artificial intelligence techniques; broken rotor bars; multiple interacting faults; accurate fault identification; supervisor agent; three-phase squirrel cage IM; intelligent classifiers; industrial production maintenance; health condition; health conditions; higher level agent; multiagent system approach; squirrel cage induction motors; competitive AI technique

Subjects: Knowledge engineering techniques; Neural computing techniques; Power engineering computing; Asynchronous machines

References

    1. 1)
      • 4. Ghorbanian, V., Faiz, J.: ‘A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes’, Mech. Syst. Signal Process., 2015, 54, pp. 427456.
    2. 2)
      • 32. Drakaki, M., Karnavas, Y.L., Chasiotis, I.D., et al: ‘An intelligent multi-agent system framework for fault diagnosis of squirrel-cage induction motor broken bars’, in Świątek, J., Borzemski, L., Wilimowska, Z. (Eds): ‘Proceedings of 38th international conference on information systems architecture and technology (ISAT), 2017j’, Advances in Intelligent Systems and Computing Series (Springer, Switzerland, 2018), pp. 8089.
    3. 3)
      • 11. Benbouzid, M.E.H., Kliman, G.B.: ‘What stator current processing based technique to use for induction motor rotor faults diagnosis?’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 238244.
    4. 4)
      • 30. Ondel, O., Boutleux, E., Clerc, G.: ‘A method to detect broken bars in induction machine using pattern recognition techniques’, IEEE Trans. Ind. Appl., 2006, 42, (4), pp. 916923.
    5. 5)
      • 23. Karnavas, Y.L., Chasiotis, I.D., Vrangas, A.: ‘Fault diagnosis of squirrel-cage induction motor broken bars based on a model identification method with subtractive clustering’. 11th IEEE Int. Symp. on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Tinos, Greece, 29 August–1 September 2017, pp. 304310.
    6. 6)
      • 18. Razik, H., Correa, M.B.R., Da Silva, E.R.C.: ‘A novel monitoring of load level and broken bar fault severity applied to squirrel-cage induction motors using a genetic algorithm’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 46154626.
    7. 7)
      • 27. Bessam, B., Menacer, A., Boumehraz, M., et al: ‘Detection of broken rotor bar faults in induction motor at low load using neural network’, ISA Trans., 2016, 64, pp. 241246.
    8. 8)
      • 7. Arabaci, H., Bilgin, O.: ‘Automatic detection and classification of rotor cage faults in squirrel cage induction motor’, Neural Comput. Appl., 2010, 19, pp. 713723.
    9. 9)
      • 19. Leitao, P.: ‘Agent-based distributed manufacturing control: a state-of-the-art survey’, Eng. Appl. Artif. Intell., 2009, 22, pp. 979991.
    10. 10)
      • 3. Seera, M., Lim, C.P., Nahavandi, S., et al: ‘Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models’, Expert Syst. Appl., 2014, 41, pp. 48914903.
    11. 11)
      • 24. Filippetti, F., Franceschini, G., Tassoni, C., et al: ‘Recent developments of induction motor drives fault diagnosis using AI techniques’, IEEE Trans. Ind. Electron., 2000, 47, (5), pp. 9941004.
    12. 12)
      • 16. Palácios, R.H.C., Da Silva, I.N., Goedtel, A., et al: ‘A comprehensive evaluation of intelligent classifiers for fault identification in three-phase induction motors’, Electr. Power Syst. Res., 2015, 127, pp. 249258.
    13. 13)
      • 36. Heo, J., Lee, K.: ‘A multi-agent system-based intelligent identification system for power plant control and fault-diagnosis’. Proc. of IEEE Power & Energy Society General Meeting, Montreal, Quebec, CA, 18–22 June 2006, pp. 16.
    14. 14)
      • 10. Faiz, J., Ebrahimi, B.M.: ‘A new pattern for detecting broken rotor bars in induction motors during start-up’, IEEE Trans. Magn., 2008, 44, (12), pp. 46734683.
    15. 15)
      • 21. Leitão, P., Mařík, V., Vrba, P.: ‘Past, present, and future of industrial agent applications’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 23602372.
    16. 16)
      • 25. Awadallah, M.A., Morcos, M.M.: ‘Application of AI tools in fault diagnosis of electrical machines and drives-an overview’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 245251.
    17. 17)
      • 34. Fregene, K., Kennedy, D., Wang, D.: ‘Toward a systems- and control-oriented agent framework’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2005, 35, (5), pp. 9991012.
    18. 18)
      • 15. Samanta, A.K., Naha, A., Routray, A., et al: ‘Fast and accurate spectral estimation for online detection of partial broken bar in induction motors’, Mech. Syst. Signal Process., 2018, 98, pp. 6377.
    19. 19)
      • 40. Glowacz, A.: ‘Acoustic based fault diagnosis of three-phase induction motor’, Appl. Acoust., 2018, 137, pp. 8289.
    20. 20)
      • 6. Nandi, S., Toliyat, H.A., Li, X.: ‘Condition monitoring and fault diagnosis of electrical motors – a review’, IEEE Trans. Energy Convers., 2005, 20, (4), pp. 719729.
    21. 21)
      • 39. Glowacz, A., Glowacz, Z.: ‘Diagnosis of stator faults of the single-phase induction motor using acoustic signals’, Appl. Acoust., 2017, 117, Part A, pp. 2027.
    22. 22)
      • 14. Siddique, A., Yadava, G.S., Singh, B.: ‘A review of stator fault monitoring techniques of induction motors’, IEEE Trans. Energy Convers., 2005, 20, (1), pp. 106114.
    23. 23)
      • 38. Covert, T., Hart, P.: ‘Nearest neighbor pattern classification’, IEEE Trans. Inf. Theory, 1967, 13, (1), pp. 2127.
    24. 24)
      • 8. Ghate, V.N., Dudul, S.V.: ‘Cascade neural network based fault classifier for three phase induction motor’, IEEE Trans. Ind. Electron., 2010, 58, (5), pp. 15551563.
    25. 25)
      • 28. Bazan, G.H., Scalassara, P.R., Wagner, E., et al: ‘Stator fault analysis of three-phase induction motors using information measures and artificial neural networks’, Electr. Power Syst. Res., 2017, 143, pp. 347356.
    26. 26)
      • 12. Bellini, A., Yazidi, A., Filippetti, F., et al: ‘High frequency resolution techniques for rotor fault detection of induction machines’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 42004209.
    27. 27)
      • 33. Davidson, E.M., McArthur, S.D.J., McDonald, J.R., et al: ‘Applying multi-agent system technology in practice: automated management and analysis of SCADA and digital fault recorder data’, IEEE Trans. Power Syst., 2006, 21, pp. 559567.
    28. 28)
      • 26. Palácios, R.H.C., Da Silva, I.N., Goedtel, A., et al: ‘A novel multi-agent approach to identify faults in line connected three-phase induction motors’, Appl. Soft Comput., 2016, 45, pp. 110.
    29. 29)
      • 5. Hassan, O.E., Amer, M., Abdelsalam, A.K., et al: ‘Induction motor broken rotor bar fault detection techniques based on fault signature analysis – a review’, IET Electr. Power Appl., 2018, 12, (7), pp. 895907.
    30. 30)
      • 35. Dou, C.X., Wang, W.Q., Hao, D.W., et al: ‘MAS-based solution to energy management strategy of distributed generation system’, Electr. Power Energy Syst., 2015, 69, pp. 354366.
    31. 31)
      • 37. Haykin, S.: ‘Neural networks: a comprehensive foundation’ (Prentice-Hall, New York, 1994, 1st edn.).
    32. 32)
      • 20. Drakaki, M., Tzionas, P.: ‘Modeling and performance evaluation of an agent-based warehouse dynamic resource allocation using Colored Petri Nets’, Int. J. Comput. Integr. Manuf., 2016, 29, pp. 736753.
    33. 33)
      • 31. Palácios, R.H.C., Da Silva, I.N., Goedtel, A., et al: ‘Diagnosis of stator faults severity in induction motors using two intelligent approaches’, IEEE Trans. Ind. Inf., 2017, 13, (4), pp. 16811691.
    34. 34)
      • 1. Bonnett, A.H., Soukup, G.C.: ‘Analysis of rotor failures in squirrel-cage induction motors’, IEEE Trans. Ind. Appl., 1988, 24, pp. 11241130.
    35. 35)
      • 9. Da Silva, A.M., Povinelli, R.J., Demerdash, N.A.O.: ‘Induction machine broken bar and stator short-circuit fault diagnostics based on three-phase stator current envelopes’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 13101318.
    36. 36)
      • 29. Jang, J.S.R.: ‘ANFIS: adaptive-network-based fuzzy inference system’, IEEE Trans. Syst. Man Cybern., 1993, 23, (3), pp. 665685.
    37. 37)
      • 13. Devi, N.R., Sarma, D.V.S., Rao, P.V.R.: ‘Detection of stator incipient faults and identification of faulty phase in three-phase induction motor–simulation and experimental verification’, IET Electr. Power Appl., 2015, 9, (8), pp. 540548.
    38. 38)
      • 41. Dorri, A., Kanhere, S., Jurdak, R.: ‘Multi-agent systems: a survey’, IEEE Access, 2018, 6, pp. 2857328593.
    39. 39)
      • 22. Bellifemine, F.L., Caire, G., Greenwood, D.: ‘Developing multi-agent systems with JADE’ (John Wiley & Sons, West Sussex, UK, 2007).
    40. 40)
      • 2. Marcello, C., Fossatti, J.P., Terra, J.I.: ‘Fault diagnosis on induction motors based on FFT’, in Salih, S. (Ed.): ‘Fourier transform signal processing’ (InTech, USA, 2012), pp. 157182.
    41. 41)
      • 17. Laala, W., Zouzou, S.E., Guedidi, S.: ‘Induction motor broken rotor bars detection using fuzzy logic: experimental research’, Int. J. Syst. Assur. Eng. Manage., 2014, 5, (3), pp. 329336.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0619
Loading

Related content

content/journals/10.1049/iet-epa.2019.0619
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading