Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Quasi-Z source indirect matrix converter-fed induction motor drive

This study proposes an induction motor drive system based on the LC filter integrated quasi-Z source indirect matrix converter (QZS-IMC). The proposed drive system shows the following features: (i) variable voltage control of inductor motor is achieved by the rectifier stage and variable frequency control is achieved by the inverter stage; (ii) automatic low voltage ride through ability enhances capability of the proposed drive against grid voltage sag; (iii) wide voltage gain range ensures the drive system with high performance in wide speed range; (iv) there is no additional input filter. The voltage control implementation in the rectifier stage is proposed to benefit low voltage stress and low converter loss. The control method combines motor vector control, minimum shoot-through duty cycle and maximum modulation indexes. As a result, the input power supply voltage and dc-link voltage are maximally utilised and the power loss is reduced. Simulation and experimental results verify the proposed QZS-IMC motor drive system.

References

    1. 1)
      • 12. Liu, T.-H., Chen, S.-H., Chen, D.-F.: ‘Design and implementation of a matrix converter PMSM drive without a shaft sensor’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (1), pp. 228243.
    2. 2)
      • 24. Karaman, E., Farasat, M., Trzynadlowski, A.M.: ‘Indirect matrix converters as generator–grid interfaces for wind energy systems’, IEEE J. Emerging Sel. Topics Power Electron., 2014, 2, (4), pp. 776783.
    3. 3)
      • 14. Khwan-on, S., de Lillo, L., Empringham, L., et al: ‘Fault-tolerant matrix converter motor drives with fault detection of open switch faults’, IEEE Trans. Ind. Electron., 2011, 59, (1), pp. 257268.
    4. 4)
      • 27. Park, K., Lee, K.: ‘A Z-source sparse matrix converter under a voltage sag condition’. 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, September 2010, pp. 28932898.
    5. 5)
      • 38. Liu, S., Ge, B., Liu, Y., et al: ‘Modeling, analysis, and parameters design of LC-filter-integrated quasi-Z-source indirect matrix converter’, IEEE Trans. Power Electron.., 2016, 31, (11), pp. 75447555.
    6. 6)
      • 29. Song, W., Zhong, Y.: ‘A study of Z-source matrix converter with high voltage transfer ratio’. IEEE Vehicle Power and Propulsion Conf., Harbin, People's Republic of China, 2008, pp. 16.
    7. 7)
      • 18. Rahman, K., Al-Emadi, N., Al-Hitmi, M., et al: ‘CMV reduction in a three-to-seven phase direct matrix converter using SVPWM’, IET Electr. Power Appl., 2019, 13, (8), pp. 12191228.
    8. 8)
      • 6. Podlesak, T.F., Katsis, D.C., Wheeler, P.W., et al: ‘A 150-kVA vector-controlled matrix converter induction motor drive’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 841847.
    9. 9)
      • 34. Sousa, S., Pinto, S., Silva, F., et al: ‘Extended voltage range AC drive using a Z source indirect matrix converter’. Proc. Electrical Machines (ICEM), Marseille, France, 2012, pp. 953958.
    10. 10)
      • 16. Casadei, D., Serra, G., Tani, A.: ‘The use of matrix converters in direct torque control of induction machines’, IEEE Trans. Ind. Electron., 2001, 48, (6), pp. 10571064.
    11. 11)
      • 7. Lee, K.-B., Blaabjerg, F.: ‘An improved DTC-SVM method for sensorless matrix converter drives using an over-modulation strategy and a simple nonlinearity compensation’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 31553166.
    12. 12)
      • 10. Wang, R., Zhong, Z., Zhang, J., et al: ‘Carrier-based PWM control strategy for three-level indirect matrix converter’, IET Power Electron., 2019, 12, (8), pp. 19641972.
    13. 13)
      • 43. Ellabban, O., Abu-Rub, H., Ge, B.: ‘A quasi-Z-source direct matrix converter feeding a vector controlled induction motor drive’, IEEE J. Emerging Sel. Topics Power Electron., 2015, 3, (2), pp. 339348.
    14. 14)
      • 35. Alizadeh, M., Kojuri, S.S.: ‘Modelling, control, and stability analysis of quasi-Z-source matrix converter as the grid interface of a PMSG-WECS’, IET Gener. Transm. Distrib., 2017, 11, (14), pp. 35763585.
    15. 15)
      • 26. Karaman, E., Farasat, M., Trzynadlowski, A.M.: ‘A comparative study of series and cascaded Z-source matrix converters’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 51645173.
    16. 16)
      • 42. Ge, B., Lei, Q., Qian, W., et al: ‘A family of Z-source matrix converters’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 3545.
    17. 17)
      • 13. Ortega, C., Arias, A., Caruana, C., et al: ‘Reducing the common mode voltage in a DTC-PMSM drive using matrix converters’. 2008 IEEE Int. Symp. on Industrial Electronics, Cambridge, UK, 2008, pp. 526531.
    18. 18)
      • 30. Bozorgi, A.M., Farasat, M.: ‘Improved design and space vector modulation of a Z-source ultrasparse matrix converter: analysis, implementation, and performance evaluation’, IEEE Trans. Ind. Appl., 2018, 54, (4), pp. 37373748.
    19. 19)
      • 22. Chiang, G.T., Itoh, J.I.: ‘DC/DC boost converter functionality in a three-phase indirect matrix converter’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 15991607.
    20. 20)
      • 33. Park, K., Lee, K., Blaabjerg, F.: ‘Improving output performance of a Z-source sparse matrix converter under unbalanced input-voltage conditions’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 20432054.
    21. 21)
      • 36. Ellabban, O., Abu-Rub, H, Bayhan, S.: ‘Z-source matrix converter: an overview’, IEEE Trans. Ind. Electron., 2016, 31, (11), pp. 74367450.
    22. 22)
      • 39. You, X., Ge, B., Liu, S., et al: ‘Common mode voltage reduction of quasi-Z source indirect matrix converter’, Int. J. Circuit Theory Appl., 2016, 44, (1), pp. 162184.
    23. 23)
      • 1. Wheeler, P.W., Rodriguez, J., Clare, J.C., et al: ‘Matrix converters: a technology review’, IEEE Trans. Ind. Electron., 2002, 49, (2), pp. 276288.
    24. 24)
      • 32. Sebtahmadi, S.S., Azad, H.B., Kaboli, S.H.A., et al: ‘A PSO-DQ current control scheme for performance enhancement of Z-source matrix converter to drive IM fed by abnormal voltage’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 16661681.
    25. 25)
      • 4. Nguyen, T.D., Lee, H.-H.: ‘A new SVM method for an indirect matrix converter with common-mode voltage reduction’, IEEE Trans. Ind. Informat., 2013, 10, (1), pp. 6172.
    26. 26)
      • 8. Lei, J., Feng, S., Zhou, B., et al: ‘Simple modulation scheme with zero common-mode voltage and improved efficiency for direct matrix converter fed PMSM drives’, IEEE J. Emerging Sel. Topics Power Electron., 2019, to appear doi: 10.1109/JESTPE.2019.2934730.
    27. 27)
      • 17. Vargas, R., Ammann, U., Hudoffsky, B., et al: ‘Predictive torque control of an induction machine fed by a matrix converter with reactive input power control’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14261438.
    28. 28)
      • 11. Yan, Y., Zhao, J., Xia, C., et al: ‘Direct torque control of matrix converter-fed permanent magnet synchronous motor drives based on master and slave vectors’, IET Power Electron., 2015, 8, (2), pp. 288296.
    29. 29)
      • 25. Garcia, C., Rivera, M., Rodriguez, J., et al: ‘Experimental evaluation of predictive voltage control for a four-leg two-stage matrix converter’, IET Power Electron., 2019, 12, (12), pp. 30773084.
    30. 30)
      • 2. Empringham, L., Kolar, J.W., Rodriguez, J., et al: ‘Technological issues and industrial application of matrix converters: A review’, IEEE Trans. Ind. Electron., 2012, 60, (10), pp. 42604271.
    31. 31)
      • 5. Mondal, S., Kastha, D.: ‘Input reactive power controller with a novel active damping strategy for a matrix converter fed direct torque controlled DFIG for wind power generation’, IEEE J. Emerging Sel. Topics Power Electron., 2019, to appear doi: 10.1109/JESTPE.2019.2938012.
    32. 32)
      • 40. Liu, S., Ge, B., You, X.Y., et al: ‘A novel quasi-Z-source indirect matrix converter’, Int. J. Circuit Theory Appl., 2015, 43, (4), pp. 438454.
    33. 33)
      • 3. She, H., Lin, H., He, B., et al: ‘Implementation of voltage-based commutation in space-vector-modulated matrix converter’, IEEE Trans. Ind. Electron., 2011, 59, (1), pp. 154166.
    34. 34)
      • 23. Khosravi, M., Amirbande, M., Khaburi, D.A., et al: ‘Review of model predictive control strategies for matrix converters’, IET Power Electron., 2019, 12, (12), pp. 30213032.
    35. 35)
      • 41. Liu, S., Ge, B., Abu-Rub, H., et al: ‘Modeling, analysis, and motor drive application of quasi-Z-source indirect matrix converter’, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 2013, 33, (1/2), pp. 2828.
    36. 36)
      • 31. Song, W., Zhong, Y., Zhang, H., et al: ‘A study of Z-source dual-bridge matrix converter immune to abnormal input voltage disturbance and with high voltage transfer ratio’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 828838.
    37. 37)
      • 21. Raghuram, M., Chauhan, A.K., Singh, S.K.: ‘Extended range of ultra sparse matrix converter using integrated switched capacitor network’, IEEE Trans. Ind. Appl., 2019, 55, (5), pp. 54065415.
    38. 38)
      • 20. Xia, Y., Zhang, X., Qiao, M., et al: ‘Research on a new indirect space-vector over-modulation strategy in matrix converter’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 11301141.
    39. 39)
      • 19. Chai, M., Xiao, D., Dutta, R., et al: ‘Space vector PWM techniques for three-to-five-phase indirect matrix converter in the over-modulation region’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 550561.
    40. 40)
      • 15. Huber, L., Borojevic, D.: ‘Space vector modulated three-phase to three-phase matrix converter with input power factor correction’, IEEE Trans. Ind. Appl., 1995, 31, (6), pp. 12341246.
    41. 41)
      • 28. Bozorgi, A.M., Hakemi, A., Farasat, M., et al: ‘Modulation techniques for common-mode voltage reduction in the Z-source ultra sparse matrix converters’, IEEE Trans. Power Electron., 2019, 34, (1), pp. 958970.
    42. 42)
      • 9. Bouchiker, S., Capolino, G.-A., Poloujadoff, M.: ‘Vector control of a permanent-magnet synchronous motor using AC-AC matrix converter’, IEEE Trans. Power Electron., 1998, 13, (6), pp. 10891099.
    43. 43)
      • 37. Liu, S., Ge, B., Jiang, X., et al: ‘Comparative evaluation of three Z-source/quasi-Z-source indirect matrix converters’, IEEE Trans. Ind. Electron.., 2015, 62, (2), pp. 692701.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0618
Loading

Related content

content/journals/10.1049/iet-epa.2019.0618
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address