access icon free Taguchi's robust design optimisation of water-cooled ISG motors considering manufacturing tolerances

Electrical machines are widely used as a driving source for various applications because of their wide speed range, high efficiency, and torque density. Similar to any other machine, manufacturing tolerances occur when mass producing the motors. In particular, the tolerances of the shape of the motor or the residual flux density in the permanent magnet significantly affect the back-electromotive force (EMF), inductance etc. When the magnitude of the back-EMF is changed, the armature current must be changed to obtain the same torque. This consequently affects the loss of the motor, and hence leads to changes in efficiency. In particular, the loss changes cause thermal problems such as irreversible demagnetisation of the magnets and dielectric breakdown due to the increase in the temperature of the coils. Therefore, to reduce the inevitable manufacturing tolerance, a robust methodology should be assured. Here, the Taguchi's robust design is applied to an integrated starter-generator motor by using the signal-to-noise ratio to consider the coil temperature.

Inspec keywords: optimisation; starting; cooling; permanent magnet generators; synchronous motors; permanent magnet motors; electric potential; demagnetisation; hybrid electric vehicles; torque

Other keywords: robust methodology; water-cooled ISG motors; torque density; residual flux density; integrated starter-generator motor; manufacturing tolerances; driving source; back-electromotive force; back-EMF; armature current; inevitable manufacturing tolerance; loss changes; Taguchi's robust design optimisation; wide speed range; electrical machines

Subjects: d.c. machines; a.c. machines; Control of electric power systems; Transportation; Synchronous machines

References

    1. 1)
      • 3. Kim, K.S., Lee, B.H., Jung, J.W., et al: ‘Thermal analysis of water cooled ISG based on a thermal equivalent circuit network’, J. Electr. Eng. Technol., 2014, 9, pp. 893898.
    2. 2)
      • 9. Adhikari, S., Halgamuge, S.K., Watson, H.C.: ‘An online power-balancing strategy for a parallel hybrid electric vehicle assisted by an integrated starter generator’, IEEE Trans. Veh. Technol., 2010, 59, (6), pp. 26892699.
    3. 3)
      • 10. Awada, A., Wefmann, B., Viering, I., et al: ‘Optimizing the radio network parameters of the long term evolution system using Taguchi's method’, IEEE Trans. Veh. Technol., 2011, 60, pp. 38253839.
    4. 4)
      • 8. Stamping process variation: an Analysis of stamping process capability and implications for design, die tryout and process control, body systems analysis task force, auto/steel partnership program’, Southfield, MI, USA, 1999.
    5. 5)
      • 7. Kim, K.S., Kim, K.S., Lee, B.H., et al: ‘Taguchi robust design for the multi-response with consideration for the manufacturing tolerance used in high speed air blower motor’. Proc. 2017 IEEE Int. Electric Machines and Drives Conf., Miami, FL, 2017, pp. 16.
    6. 6)
      • 11. Taguchi, G., Yokoyama, Y., Wu, Y.: ‘Taguchi methods – design of experiments(TAGUCHI METHODS SERIES) (American Supplier Institute, Inc., USA, 1983).
    7. 7)
      • 1. Choi, C., Lee, W., Kwon, S.O., et al: ‘Experimental estimation of inductance for interior permanent magnet synchronous machine considering temperature distribution’, IEEE Trans. Magn., 2013, 49, pp. 29902996.
    8. 8)
      • 13. Wang, H.T., Liu, Z.J., Chen, S.X., et al: ‘Application of Taguchi method to robust design of BLDC motor performance’, IEEE Trans. Magn., 1999, 35, (5), pp. 37003702.
    9. 9)
      • 12. Gaing, Z.L., Chiang, J.A.: ‘Robust design of in-wheel PM motor by fuzzy-based Taguchi method’. Power and Energy Society General Meeting, Minneapolis, MN, USA, 2010, pp. 17.
    10. 10)
      • 5. Wang, C.F., Shen, J.X., Luk, P.C.K., et al: ‘Design issues of an IPM motor for EPS’, COMPEL Int. J. Comput. Math. Electr. Electron. Eng., 2011, 31, (1), pp. 7187.
    11. 11)
      • 15. Lee, B.H., Kwon, S.O., Sun, T., et al: ‘Modeling of core loss resistance for d-q equivalent circuit analysis of IPMSM considering harmonic linkage flux’, IEEE Trans. Magn., 2011, 47, pp. 10661069.
    12. 12)
      • 14. Chowdhury, M., Islam, M., Gebregergis, A., et al: ‘Robust design optimization of permanent magnet synchronous machine utilizing genetic and Taguchi's algorithm’. Energy Conversion Congress and Exposition (ECCE), Denver, CO, USA, 2013, pp. 50065012.
    13. 13)
      • 6. Carraro, E., Bianchi, N., Zhang, S., et al: ‘Permanent magnet volume minimization of spoke type fractional slot synchronous motors’. Proc. IEEE Energy Conversion Congress and Exposition, ECCE, Pittsburgh, PA, USA, September 2014, pp. 41804187.
    14. 14)
      • 4. Lee, S.J., Kim, K.S., Cho, S., et al: ‘Optimal design of interior permanent magnet synchronous motor considering the manufacturing tolerances using Taguchi robust design’, IET Electr. Power Appl., 2014, 8, pp. 2328.
    15. 15)
      • 2. Lee, B.H., Kim, K.S., Jung, J.W., et al: ‘Temperature estimation of IPMSM using thermal equivalent circuit’, IEEE Trans. Magn., 2012, 48, pp. 29492952.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0574
Loading

Related content

content/journals/10.1049/iet-epa.2019.0574
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading