access icon free Identification and control of the motor-drive servo turntable with the switched friction model

In this study, the identification and control scheme of the motor-drive servo turntable are researched to achieve accurate tracking. Firstly, the input–output identification experiments are designed and realised for the global model of motor-drive servo turntable. The order of the global controlled auto-regressive model is determined by the Akaike information criterion, and the parameters are estimated by a particle swarm optimisation-cuckoo search algorithm. Secondly, the switched friction model is built combining the LuGre structure and the Stribeck curve. The switching conditions and the parameters of the switched friction model are determined though the input–output and the friction experiments. A constrained multi-objective optimisation problem is constructed for the parameter identification of the switched friction model. It is solved via a fuzzy comprehensive evaluation. Finally, the composite control strategy, in which the proportional–integral–derivative controller and model-based friction observer are combined, is proposed in the azimuth angle system of the motor-drive servo turntable. The trajectory tracking results in simulation and experiment illustrate the effectiveness of the proposed switched model, identification method, and composite control strategy.

Inspec keywords: position control; parameter estimation; fuzzy set theory; particle swarm optimisation; vehicle dynamics; least squares approximations; search problems; servomechanisms; servomotors; three-term control; control system synthesis; observers; friction

Other keywords: parameter identification; global controlled autoregressive model; switched friction model; proportional–integral–derivative controller; composite control strategy; motor-drive servo turntable; input–output identification experiments

Subjects: Optimisation techniques; Tribology (mechanical engineering); Combinatorial mathematics; Combinatorial mathematics; Spatial variables control; Other topics in statistics; Transportation system control; Interpolation and function approximation (numerical analysis); Simulation, modelling and identification; Numerical analysis; Statistics; Optimisation; Control system analysis and synthesis methods

References

    1. 1)
      • 4. Kumar, T.S., Banavar, R.N.: ‘Identification of friction in the 50/80 cm ARIES Schmidt telescope using the LuGre model’, IFAC-Papers Online, 2011, 9, pp. 980985.
    2. 2)
      • 10. Ananyevski, I.M., Ishkhanyan, T.A.: ‘Control of a two-body precision turntable motor-drive system in the presence of friction’, IFAC-Papers Online, 2015, 48, (25), pp. 283286.
    3. 3)
      • 28. Lampaert, V., Swevers, J., Al-Bender, F.: ‘Modification of the Leuven integrated friction model structure’, IEEE Trans. Autom. Control, 2002, 47, (4), pp. 683687.
    4. 4)
      • 24. Bicakci, S., Akdas, D., Deniz Karaoglan, A.: ‘Optimizing Karnopp friction model parameters of a pendulum using RSM’, Eur. J. Control, 2014, 20, (4), pp. 180187.
    5. 5)
      • 38. Li, Y., Sun, Z., Han, L., et al: ‘Fuzzy comprehensive evaluation method for energy management systems based on an internet of things’, IEEE Access, 2017, 5, pp. 2131221322.
    6. 6)
      • 21. Han, Y., Wu, J.J., Liu, C., et al: ‘Static model analysis and identification for serial articulated manipulators’, Robot. Comput.-Integr. Manuf., 2019, 57, pp. 155165.
    7. 7)
      • 31. Sarlette, A., Sepulchre, R.J.: ‘Control limitations from distributed sensing: theory and extremely large telescope application’, Automatica, 2014, 50, (2), pp. 421430.
    8. 8)
      • 20. Muddineni, V.P., Sandepudi, S.R., Bonala, A.K.: ‘Finite control set predictive torque control for induction motor drive with simplified weighting factor selection using TOPSIS method’, IET Electr. Power Appl., 2017, 11, (5), pp. 749760.
    9. 9)
      • 19. Ting, C., Chang, Y., Shi, B., et al: ‘Adaptive backstepping control for permanent magnet linear synchronous motor servo drive’, IET Electr. Power Appl., 2015, 9, (3), pp. 265279.
    10. 10)
      • 30. Shang, W., Cong, S., Yhang, Z.: ‘Nonlinear friction compensation of a 2-DOF planar parallel manipulator’, Mechatronics, 2008, 18, (7), pp. 340346.
    11. 11)
      • 2. Wang, T., San, X.G., Gao, S.J., et al: ‘Note: design and capability verification of fillet triangle flexible support’, Rev. Sci. Instrum., 2017, 88, (12), pp. 111126.
    12. 12)
      • 3. Gawronski, W.: ‘Control and pointing challenges of large antennas and telescopes’, Control Syst. Technol., 2007, 15, (2), pp. 276289.
    13. 13)
      • 25. Armstrong-Hélouvry, B., Dupont, P., Canudas de Wit, C.: ‘Survey of models, analysis tools, and compensation methods for the control of machines with friction’, Automatica, 1994, 30, (7), pp. 10831138.
    14. 14)
      • 23. Maru, M.M., Trommer, R.M., Cavalcanti, F.K., et al: ‘The Stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends’, Energy, 2015, 69, pp. 673681.
    15. 15)
      • 16. Shao, M.Q., Chen, W.D., Che, C.X.: ‘Experiment study on the active vibration control using H∞ method based on ERA identification model’, J. Vibrat. Shock., 2017, 36, (2), pp. 7276.
    16. 16)
      • 29. Huang, Y., Lv, Z., Wan, L., et al: ‘A new method of hybrid friction stir welding assisted by friction surfacing for joining dissimilar Ti/Al alloy’, Mater. Lett., 2017, 207, pp. 172175.
    17. 17)
      • 37. Ding, J., Wang, Q., Zhang, Q., et al: ‘A hybrid particle swarm optimization- cuckoo search algorithm and its engineering applications’, Math. Probl. Eng., 2019, 2019, p. 12, https://doi.org/10.1155/2019/5213759.
    18. 18)
      • 17. Liu, X., Sun, Q., Cooper, J.E.: ‘LQG based model predictive control for gust load alleviation’, Aerosp. Sci. Technol., 2017, 71, pp. 499509.
    19. 19)
      • 36. Chen, X.X.: ‘Using Akaike information criterion for selecting the field distribution in a reverberation chamber’, IEEE Trans. Electromagn. Compat., 2013, 55, (4), pp. 664670.
    20. 20)
      • 6. Li, Z., Fan, D., Fan, S.: ‘LuGre-model-based friction compensation in direct-drive inertially stabilized platforms’, IFAC-Papers Online, 2013, 46, (5), pp. 636642.
    21. 21)
      • 7. Liu, Q., Xi, J.: ‘Case-based parametric design system for test turntable’, Expert Syst. Appl., 2011, 38, (6), pp. 65086516.
    22. 22)
      • 22. Zhang, Y., Yan, P., Zhang, Z.: ‘High precision tracking control of a servo gantry with dynamic friction compensation’, ISA Trans., 2016, 62, pp. 349356.
    23. 23)
      • 14. Emre, Ç, Halil, G.: ‘Enhanced speed control of a DC servo system using PI + DF controller tuned by stochastic fractal search technique’, J. Franklin Inst., 2018, 356, (3), pp. 13331359.
    24. 24)
      • 11. Qiu, W., Zhou, J., Zhao, H., et al: ‘Three-dimensional sparse turntable microwave imaging based on compressive sensing’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (4), pp. 826830.
    25. 25)
      • 32. Thum, C.K., Du, C., Chen, B.M., et al: ‘A unified control scheme for track seeking and following of a hard disk drive servo system’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 294306.
    26. 26)
      • 33. Tsai, C.-Y., Wong, C.C., Yu, C.-J., et al: ‘A hybrid switched reactive-based visual servo control of 5-DOF robot manipulators for pick-and-place’, IEEE Syst. J., 2015, 9, (1), pp. 119130.
    27. 27)
      • 8. Puig, L., Barton, A., Rando, N.: ‘A review on large deployable structures for astrophysics missions’, Acta Astronaut., 2010, 67, (1-2), pp. 1226.
    28. 28)
      • 34. Zhang, Q., Wang, Q.J., Li, G.L.: ‘Switched system identification based on the constrained multi-objective optimization problem with application to the servo turntable’, Int. J. Control Autom. Syst., 2016, 14, (5), pp. 11531159.
    29. 29)
      • 15. Liu, J., Li, H.W., Deng, Y.T.: ‘Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 36553671.
    30. 30)
      • 18. Deng, Y.T., Xia, P.P., Li, H.W., et al: ‘Speed control for K-mirror of 2-m telescope using improved active disturbance rejection controller’, Measurement, 2018, 129, pp. 245255.
    31. 31)
      • 5. Lin, C.H.: ‘Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive’, IET Electr. Power Appl., 2004, 151, (6), pp. 711724.
    32. 32)
      • 12. Shen, J., Xin, B., Cui, H., et al: ‘Speed control of single-axis rotation INS by tracking differentiator based fuzzy PID’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (6), pp. 29762986.
    33. 33)
      • 27. Keck, A., Zimmermann, J., Sawodny, O.: ‘Friction parameter identification and compensation using the ElastoPlastic friction model’, Mechatronics, 2017, 47, pp. 168182.
    34. 34)
      • 1. Yu, J., Dewantari, A., Ka, M.H.: ‘Measurement of the rotation center from the received signals for ultrahigh-resolution radar imaging’, IEEE Antennas Wirel. Propag., 2017, 16, pp. 22662269.
    35. 35)
      • 35. Zhang, Q., Wang, Q.J., Li, G.L.: ‘Nonlinear modelling and predictive functional control of Hammerstein system with application to the turntable servo system’, Mech. Syst. Signal Proc., 2016, 72-73, pp. 383394.
    36. 36)
      • 26. Al-Bender, F., Lampaert, V., Swevers, J.: ‘The generalized Maxwell-slip model: a novel model for friction simulation and compensation’, IEEE Trans. Autom. Control, 2005, 50, (11), pp. 18831887.
    37. 37)
      • 9. Saha, N., Panda, A.K., Anda, S.P.: ‘Speed control with torque ripple reduction of switched reluctance motor by many optimizing liaison techniques’, Int. J. Eng. Sci., 2016, 5, (3), pp. 829842.
    38. 38)
      • 13. Xu, L., Xu, T., Wang, J., et al: ‘A fuzzy PID controller-based two-axis compensation device for airborne laser scanning’, IEEE Sens. J., 2017, 17, (5), pp. 13531362.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0568
Loading

Related content

content/journals/10.1049/iet-epa.2019.0568
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading