access icon free Torque ripple error compensation of high-dynamic coil array commutation algorithm for magnetic levitation planar motor

In the magnetic levitation planar motor which can achieve six degrees-of-freedom motion, decoupling control is realised by coil array commutation algorithm, due to the limitation of the sampling period of the real-time system, a high-dynamic coil array commutation algorithm is needed to achieve higher computational efficiency, but this will lead to the coil array not accurately providing the force/torque required for the trajectory movement, and generate a certain torque ripple error. In this study, the cause of this torque ripple error is analysed, and a feedforward compensation method is proposed. The results of simulation and experiment show that the proposed feedforward compensation method of high-dynamic coil array commutation algorithm can reduce torque ripple error by 88%, and achieve higher trajectory tracking accuracy while satisfying high computational efficiency.

Inspec keywords: magnetic variables control; position control; torque control; magnetic levitation; error compensation; compensation; feedforward; coils; trajectory control

Other keywords: trajectory movement; torque ripple error compensation; trajectory tracking; feedforward compensation method; magnetic levitation planar motor; high-dynamic coil array commutation algorithm

Subjects: Spatial variables control; Inductors and transformers; Mechanical variables control; Magnetic variables control; Other electromagnetic device applications

References

    1. 1)
      • 4. Kim, W.-J., Trumper, D.L.: ‘High-precision magnetic levitation stage for photolithography’, Prec. Eng., 1998, 22, pp. 6677.
    2. 2)
      • 19. Min, W., Zhang, M., Zhu, Y., et al: ‘Analysis and optimization of a new 2-D magnet array for planar motor’, IEEE Trans. Magn., 2010, 46, (5), pp. 11671171.
    3. 3)
      • 10. Yu, H., Kim, W.-J.: ‘Controller design and implementation of six degree-of-freedom magnetically levitated positioning system with high precision’, Proc. IMechE I, J. Syst. Control Eng., 2008, 222, pp. 745756.
    4. 4)
      • 3. Kim, W.-J.: ‘High-precision planar magnetic levitation’. PhD thesis, Massachusetts Inst. Technol., Cambridge, 1997.
    5. 5)
      • 21. Min, W., Zhang, M., Zhu, Y., et al: ‘Analysis and minimization design of force ripples caused by higher harmonics in permanent magnet planar motor’. Proc. ASPE 2011 Int. Mechanical Congress & Exposition, Denver, CO, USA, 2011.
    6. 6)
      • 2. Vandenput, A.J.A., Lomonova, E.A., Makarovic, J., et al: ‘Novel types of the multi-degrees-of-freedom electromagnetic actuators’. Proc. Int. Symp. Power Electronics, Electrical Drives, Automation Motion, Taormina, Italy, May 2006, pp. 10561062.
    7. 7)
      • 20. Zhu, Y., Feng, L., Zhang, M., et al: ‘Optimal design of ironless permanent magnet planar motors for minimisation of force ripples’, IET Electric Power Appl., 2013, 7, (4), pp. 321330.
    8. 8)
      • 8. Yu, H., Kim, W.-J.: ‘Contoller design and implementation of 6-DOF magnetically levitated positioner with high-precision’. Proc. ASME Design Engineering Division 2005, Pts A and B, Orlando, FL, USA, 2005, pp. 559569.
    9. 9)
      • 17. Jansen, J.W.: ‘Magnetically levitated planar actuator with moving magnets: electromechanical analysis and design’. PhD thesis, Technical University Eindhoven, Eindhoven, 2007.
    10. 10)
      • 16. Jansen, J.W., van Lierop, C.M.M., Lomonova, E.A., et al: ‘Modeling of magnetically levitated planar actuators with moving magnets’, IEEE Trans. Magn., 2007, 43, (1), pp. 1525.
    11. 11)
      • 13. van Lierop, C.M.M., Jansen, J.W., Lomonova, E.A., et al: ‘Commutation of a magnetically levitated planar actuator with moving-magnets’, IEEE Trans. Ind. Appl., 2008, 128, (12), pp. 13331338.
    12. 12)
      • 11. van Lierop, C.M.M., Jansen, J.W., Damen, A.A.H., et al: ‘Control of multi-degree-of-freedom planar actuators’. Proc. IEEE Int. Conf. Control Appl. (CCA), Munich, Germany, October 2006, pp. 25162521.
    13. 13)
      • 5. Kim, W.-J., Trumper, D.L., Lang, J.H.: ‘Modeling and vector control of planar magnetic levitator’, IEEE Trans. Ind. Appl., 1998, 34, (6), pp. 12541262.
    14. 14)
      • 12. van Lierop, C.M.M., Jansen, J.W., Damen, A.A.H., et al: ‘Model-based commutation of a long-stroke magnetically levitated linear actuator’. Proc. IEEE 41st Annual Meeting Industrial Application Conf., Tampa, FL, USA, October 2006, pp. 393399.
    15. 15)
      • 1. Jansen, J.W., van Lierop, C.M.M., Lomonova, E.A.: ‘Magnetically levitated planar actuator with moving magnets’. Proc. IEEE Int. Electrical Machines Drives Conf. (IEMDC), Antalya, Turkey, 2007, vol. 1, pp. 272278.
    16. 16)
      • 22. Cao, J., Zhu, Y., Yin, W., et al: ‘Electromagnetic forces acting on the planar armature of a core-type synchronous permanent-magnet planar motor’, IEEE Trans. Magn., 2009, 45, (8), pp. 31453150.
    17. 17)
      • 9. Hu, T., Kim, W.-J.: ‘Modeling and multivariable control of a novel multi-dimensional levitated stage with high precision’, Int. J. Control Autom. Syst., 2006, 4, (1), pp. 19.
    18. 18)
      • 7. Zhang, S., Zhu, Y., Yin, W., et al: ‘Coil array real-time commutation law for a magnetically levitated stage with moving-coils’, J. Mech. Eng., 2011, 47, (6), pp. 180185.
    19. 19)
      • 15. Rovers, J.M.M., Jansen, J.W., Compter, J.C., et al: ‘Analysis method of the dynamic force and torque distribution in the magnet array of a commutated magnetically levitated planar actuator’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 21572166.
    20. 20)
      • 18. Cao, J., Zhu, Y., Wang, J., et al: ‘Electromagnetic forces acting on the planar armature in a core-type SPMPM’, IEEE Trans. Magn., 2009, 45, (8), pp. 31453150.
    21. 21)
      • 14. van Lierop, C.M.M., Jansen, J.W., Lomonova, E.A., et al: ‘Experiments on a magnetically levitated planar actuator’. Proc. 20th Int. Conf. Magnetically Levitated System Linear Drives, San Diego, CA, USA, December 2008, pp. 1518.
    22. 22)
      • 6. Trumper, D.L., Kim, W.J., Williams, M.E.: ‘Design and analysis framework for linear permanent-magnet machines’, IEEE Trans. Ind. Appl., 1996, 32, (2), pp. 371379.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0566
Loading

Related content

content/journals/10.1049/iet-epa.2019.0566
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading