access icon free DC-link voltage control strategy of Z-source inverter for high-speed permanent magnet motor

In order to widen the flux-weakening range of motors, this study proposed a DC-link voltage control strategy for high-speed permanent magnet motor drive systems powered by Z-source inverter. In this strategy, the DC-link voltage, also known as the output voltage of the impedance network, varies with the inverter output voltage and remains optimal at all times, whether in steady state or transient state. As for the shoot-through duty ratio and the modulation index, the two main control variables in the Z-source inverter are under unified control to ensure the stability of the system, while achieving fast tracking and reducing the loss. In addition, a new sliding mode control system based on the indirect control of the capacitor voltage is used to control the DC-link voltage to suppress the system fluctuation caused by the change of the given value or the motor load. Besides, various conventional voltage Z-source inverter pulse width modulation strategies can be applied to this technology. Simulations and experiments verified the effectiveness of the proposed strategy.

Inspec keywords: machine control; permanent magnet motors; voltage control; PWM invertors; variable structure systems; motor drives

Other keywords: high-speed permanent magnet motor drive systems; indirect control; capacitor voltage; sliding mode control system; DC-link voltage control strategy; main control variables; unified control; conventional voltage Z-source inverter pulse; inverter output voltage

Subjects: Multivariable control systems; d.c. machines; DC-AC power convertors (invertors); Voltage control; Drives; Control of electric power systems; a.c. machines

References

    1. 1)
      • 23. Wang, X.G., Xiao, L.Y.: ‘Sliding mode control for DC-link voltage of Z-source inverter’, Electr. Mach. Control, 2015, 19, pp. 16.
    2. 2)
      • 24. Lei, Q., Peng, F.Z., He, L.: ‘Power loss analysis of current-fed quasi-Z-source inverter’. Energy Conversion Congress & Exposition, Atlanta, GA, USA, 2010, pp. 28832887.
    3. 3)
      • 12. Hardi, S., Idris, M.H., Rohana, I.: ‘Adjustable speed drives response to voltage sags’, Appl. Mech. Mater., 2013, 367, pp. 171180.
    4. 4)
      • 20. Kumar, J., Kumar, V., Rana, K.P.S.:Design of robust fractional order fuzzy sliding mode PID controller for two-link robotic manipulator system’, J. Intell. Fuzzy Syst., 2018, 35, pp. 53015315.
    5. 5)
      • 19. de Jesús Rubio, J., Ochoa, G., Mujica-Vargas, D.: ‘Structure regulator for the perturbations attenuation in a quadrotor’, IEEE Access, 2019, 7, pp. 138244138252.
    6. 6)
      • 5. Dong, J.N., Huang, Y.K., Jin, L., et al: ‘Review on high speed permanent magnet machines including design and analysis technologies’, Proc. CSEE, 2014, 34, pp. 46404653.
    7. 7)
      • 17. Yang, S.T., Ding, X.P., Fan, Z., et al: ‘Unified control technique for Z-source inverter’. IEEE Power Electronics Specialists Conf., Rhodes, Greece, 2008, pp. 32363242.
    8. 8)
      • 6. Tenconi, A., Vaschetto, S., Vigliani, A.: ‘Electrical machines for high-speed applications: design considerations and tradeoffs’, IEEE Trans. Ind. Electron., 2014, 61, pp. 30223029.
    9. 9)
      • 4. Bianchi, N., Bolognani, S., Luise, F.: ‘Potentials and limits of high-speed PM motors’, IEEE Trans. Ind. Appl., 2004, 40, (6), pp. 15701578.
    10. 10)
      • 22. Zakipour, A., Shokrollah, S.K., Bina, M.T.: ‘Sliding mode control of the nonminimum phase grid-connected Z-source inverter’, Int. Trans. Electr. Energy Syst., 2017, 27, p. e2398.
    11. 11)
      • 15. Xue, B.C., Ding, X.P., Zhang, C.H., et al: ‘Quasi-Z-source inverter adjustable speed drives system and its partly PAM/PWM control strategy’, Trans. China Electrotech. Soc., 2012, 27, pp. 142149.
    12. 12)
      • 16. Gerada, D., Mebarki, A., Brown, N.L.: ‘High-speed electrical machines: technologies, trends, and developments’, Trans. Ind. Electron., 2013, 61, pp. 29462959.
    13. 13)
      • 11. Baby, L.M., Salitha, K.: ‘Speed control of maximum boost controlled Z-source converter fed induction motor drive with peak DC link voltage control’. Int. Conf. on Control Communication and Computing, Thiruvananthapuram, India, 2014, pp. 281286.
    14. 14)
      • 1. Wang, F.X.: ‘Study on design feature and related technology of high speed electrical machines’, J. Shenyang Univ. Technol., 2006, 28, pp. 258263.
    15. 15)
      • 18. de Jesús Rubio, J.: ‘Robust feedback linearization for nonlinear processes control’, ISA Trans., 2018, 74, pp. 155164.
    16. 16)
      • 7. Ellabban, O., Abu-Rub, H., Baonung, G.: ‘A quasi Z-source direct matrix converter feeding a vector controlled induction motor drive’, J. Emerg. Sel. Top. Power Electron., 2015, 3, pp. 339348.
    17. 17)
      • 3. Moghaddam, R.R.: ‘High speed operation of electrical machines, a review on technology, benefits and challenges’. IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 55395546.
    18. 18)
      • 21. de Jesús Rubio, J.: ‘Hybrid controller with observer for the estimation and rejection of disturbances’, ISA Trans., 2016, 65, pp. 445455.
    19. 19)
      • 13. Pietilainen, K., Harnefors, L., Petersson, A., et al: ‘DC-link stabilization and voltage sag ride-through of inverter drives’, IEEE Trans. Ind. Electron., 2006, 53, pp. 12611268.
    20. 20)
      • 2. Gieras, J.F.: ‘Design of permanent magnet brushless motors for high speed applications’. 17th Int. Conf. on Electrical Machines & Systems, Hangzhou, 2014, pp. 116.
    21. 21)
      • 14. Boglietti, A., Ferraris, P., Lazzari, M., et al: ‘Influence of the inverter characteristics on the iron losses in PWM inverter-fed induction motors’, IEEE Trans. Ind. Appl., 1996, 32, pp. 11901194.
    22. 22)
      • 9. Liu, H.L., He, Y.Y., Jiang, W.: ‘Maximum boost control of cascaded Z-source inverter with third harmonic injection’. Intelligent Control and Automation, Shenyang, China, 2015, pp. 12071212.
    23. 23)
      • 10. Dong, S., Zhang, Q.F., Wang, R., et al: ‘Analysis of capacitor voltage ripple for bi-directional Z-source inverters based on SVPWM’, Trans. China Electrotech. Soc., 2017, 32, pp. 107114.
    24. 24)
      • 8. Xia, C.J., Li, X.M.: ‘Z-source inverter-based approach to the zero-crossing point detection of back EMF for sensorless brushless DC motor’, Trans. Power Electron., 2015, 30, pp. 14881498.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0535
Loading

Related content

content/journals/10.1049/iet-epa.2019.0535
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading