access icon free Magnetic field-modulated linear permanent-magnet generator for direct-drive wave energy conversion

The linear permanent-magnet synchronous generator (LPMSG) for direct-drive wave energy conversion (WEC) suffers from many drawbacks that have not yet been overcome, such as a low power density and a bulky system volume. Therefore, a magnetic field-modulated linear permanent-magnet generator (FMLPMG) with a simple structure has been designed and manufactured. First, the operating principle of the FMLPMG is demonstrated by the equivalent magnetic circuit method, which explains the high power density of the FMLPMG. Second, at a constant speed and a sinusoidal speed, the electromagnetic characteristics of the FMLPMG under the no-load and load conditions are analysed by the finite-element method. Finally, a direct-drive WEC test platform is built to simulate the process of wave action on the FMLPMG. No-load and load experiments of the FMLPMG are conducted on the test platform, and the results are compared with those of an LPMSG with the same volume and operating conditions. The results show that the FMLPMG with a high power density converts wave energy effectively and solves the problem of low power density faced by the LPMSG in direct-drive WEC.

Inspec keywords: sensorless machine control; permanent magnet generators; direct energy conversion; linear machines; magnetic circuits; synchronous generators; wave power generation; power convertors; finite element analysis

Other keywords: permanent-magnet generator; direct-drive wave energy conversion; load conditions; high power density; operating conditions; magnetic field-modulated linear; wave action; LPMSG; FMLPMG; bulky system volume; low power density; direct-drive WEC test platform; equivalent magnetic circuit method; linear permanent-magnet synchronous generator; load experiments; no-load

Subjects: Numerical analysis; Wave power; Control of electric power systems; Finite element analysis; Linear machines; Synchronous machines

References

    1. 1)
      • 14. Ho, S.L., Wang, Q., Niu, S., et al: ‘A novel magnetic-geared tubular linear machine with halbach permanent-magnet arrays for tidal energy conversion’, IEEE Trans. Magn., 2015, 51, (11), pp. 14.
    2. 2)
      • 9. McGilton, B., Crozier, R., McDonald, A., et al: ‘Review of magnetic gear technologies and their applications in marine energy’, IET Renew. Power Gener., 2018, 12, (2), pp. 174181.
    3. 3)
      • 5. Pan, J.F., Li, Q., Wu, X., et al: ‘Complementary power generation of double linear switched reluctance generators for wave power exploitation’, Int. J. Electr. Power Energy Syst., 2019, 106, pp. 3344.
    4. 4)
      • 3. Huang, L., Hu, M., Yu, H., et al: ‘Design and experiment of a direct-drive wave energy converter using outer-Pm linear tubular generator’, IET Renew. Power Gener., 2017, 11, (3), pp. 353360.
    5. 5)
      • 18. Wong, H.Y., Bird, J.Z., Modaresahmadi, S., et al: ‘Comparative analysis of a coaxial magnetic gear with a flux concentration rotor and consequent pole rotor typology’, IEEE Trans. Magn., 2018, 54, (11), pp. 15.
    6. 6)
      • 4. Vining, J., Lipo, T.A., Venkataramanan, G.: ‘Experimental evaluation of a doubly-fed linear generator for ocean wave energy Applications'. IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 2011, pp. 41154122.
    7. 7)
      • 26. Johnson, M., Gardner, M.C., Toliyat, H.A., et al: ‘Design, construction, and analysis of a large-scale inner stator radial flux magnetically geared generator for wave energy conversion’, IEEE Trans. Ind. Appl., 2018, 54, (4), pp. 33053314.
    8. 8)
      • 2. Liu, C., Yu, H., Liu, Q., et al: ‘Research on a double float system for direct drive wave power conversion’, IET Renew. Power Gener., 2017, 11, (7), pp. 10261032.
    9. 9)
      • 11. Rahideh, A., Vahaj, A.A., Mardaneh, M., et al: ‘Two-dimensional analytical investigation of the parameters and the effects of magnetisation patterns on the performance of coaxial magnetic gears’, IET Electr. Syst. Transp., 2017, 7, (3), pp. 230245.
    10. 10)
      • 17. Li, W., Ching, T.W., Chau, K.T.: ‘A new linear vernier permanent-magnet machine using high-temperature superconducting Dc field excitation’, IEEE Trans. Appl. Supercond., 2017, 27, (4), pp. 15.
    11. 11)
      • 7. Zheng, J.G., Huang, Y.P., Wu, H.X., et al: ‘Design of a transverse-flux permanent-magnet linear generator and controller for use with a free-piston stirling engine’, Chin. J. Mech. Eng., 2016, 29, (4), pp. 832842.
    12. 12)
      • 8. El-Touni, H., El-Nemr, M., Rashad, E.E.: ‘Thrust force characteristics of permanent-magnet-assisted linear synchronous reluctance machines using finite element analysis’. 2018 Twentieth Int. Middle East Power Systems Conf. (MEPCON), Cairo, Egypt, 2018, pp. 9981003.
    13. 13)
      • 25. Yin, X., Fang, Y., Pfister, P.-D.: ‘High-torque-density Pseudo-direct-drive permanent-magnet machine with less magnet’, IET Electr. Power Appl., 2018, 12, (1), pp. 3744.
    14. 14)
      • 12. Li, W., Chau, K.T., Jiang, J.Z.: ‘Application of linear magnetic gears for Pseudo-direct-drive oceanic wave energy harvesting’, IEEE Trans. Magn., 2011, 47, (10), pp. 26242627.
    15. 15)
      • 23. Johnson, M., Gardner, M.C., Toliyat, H.A.: ‘A parameterized linear magnetic equivalent circuit for analysis and design of radial flux magnetic gears—part I: implementation’, IEEE Trans. Energy Convers., 2018, 33, (2), pp. 784791.
    16. 16)
      • 24. Johnson, M., Gardner, M.C., Toliyat, H.A.: ‘A parameterized linear magnetic equivalent circuit for analysis and design of radial flux magnetic gears–part Ii: evaluation’, IEEE Trans. Energy Convers., 2018, 33, (2), pp. 792800.
    17. 17)
      • 20. Zhu, Z.Q., Liu, Y.: ‘Analysis of air-gap field modulation and magnetic gearing effect in fractional-slot concentrated-winding permanent-magnet synchronous machines’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 36883698.
    18. 18)
      • 13. Feng, N., Yu, H., Hu, M., et al: ‘A study on a linear magnetic-geared Interior permanent magnet generator for direct-drive wave energy conversion’, Energies, 2016, 9, (7), pp. 112.
    19. 19)
      • 21. Zhu, Z.Q.: ‘Overview of novel magnetically geared machines with partitioned stators’, IET Electr. Power Appl., 2018, 12, (5), pp. 595604.
    20. 20)
      • 22. Zhang, X., Liu, X., Chen, Z.: ‘A novel dual-flux-modulator coaxial magnetic gear for high torque capability’, IEEE Trans. Energy Convers., 2018, 33, (2), pp. 682691.
    21. 21)
      • 15. Huang, L., Yue, F., Chen, M., et al: ‘Research on a field-modulated linear permanent-magnet generator for wave energy conversion’. 20th Int. Conf. on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 2017, pp. 14.
    22. 22)
      • 1. Rhinefrank, K., Schacher, A., Prudell, J., et al: ‘Comparison of direct-drive power takeoff systems for ocean wave energy applications’, IEEE J. Ocean. Eng., 2012, 37, (1), pp. 3544.
    23. 23)
      • 19. Johnson, M., Gardner, M.C., Toliyat, H.A.: ‘Design comparison of ndfeb and ferrite radial flux surface permanent magnet coaxial magnetic gears’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 12541263.
    24. 24)
      • 16. Huang, L., Chen, M., Wang, L., et al: ‘Analysis of a hybrid field-modulated linear generator for wave energy conversion’, IEEE Trans. Appl. Supercond., 2018, 28, (3), pp. 15.
    25. 25)
      • 10. Matthee, A., Wang, R.-J., Agenbach, C.J., et al: ‘Evaluation of a magnetic gear for air-cooled condenser applications’, IET Electr. Power Appl., 2018, 12, (5), pp. 677683.
    26. 26)
      • 6. Chen, Y., Cao, M., Ma, C., et al: ‘Design and research of double-sided linear switched reluctance generator for wave energy conversion’, Appl. Sci., 2018, 8, (9), p. 1700.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0483
Loading

Related content

content/journals/10.1049/iet-epa.2019.0483
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading