access icon free Parallel mode notch filters for vibration control of magnetically suspended flywheel in the full speed range

Undesired vibration force caused by harmonic currents is a common problem in a magnetically suspended flywheel (MSFW) rotor system. It poses a potential threat to system stability and performance degradation. In this work, multiple different phase-shift notch filters are connected in parallel mode to suppress the vibration harmonics. First, the multi-frequency vibrations in the MSFW is modelled and analysed. Then multiple different notch filters in parallel mode are proposed to plug into the baseline magnetically suspension system. The performance comparison with the conventional multiple notch filters is investigated. The parameters design and calculation for the proposed method are analysed in details. Moreover, the closed-loop stability of the overall system is given in the full speed range. Finally, simulation and experimental results for the MSFW demonstrate the superiority of the proposed method on both harmonics suppression and stability preservation.

Inspec keywords: notch filters; flywheels; harmonics suppression; vibration control; velocity control; magnetic bearings; closed loop systems; stability; rotors (mechanical)

Other keywords: multifrequency vibrations; magnetically suspended flywheel rotor system; closed-loop stability; multiple different notch filters; stability preservation; vibration control; MSFW; baseline magnetically suspension system; vibration harmonics; multiple different phase-shift notch filters; harmonic currents; system stability; speed range; parallel mode notch filters; harmonics suppression; performance degradation; undesired vibration force

Subjects: Stability in control theory; Mechanical components; Other energy storage; Filters and other networks; Vibrations and shock waves (mechanical engineering); Control technology and theory (production); Mechanical variables control; Other magnetic material applications and devices; Velocity, acceleration and rotation control

References

    1. 1)
      • 8. Han, B.C., Xu, Q., Zheng, S.Q.: ‘Integrated radial/trust magnetic bearing without thrust disk for a high-speed driving system’, IET Electr. Power Appl., 2016, 10, (4), pp. 276283.
    2. 2)
      • 6. Reza, S., Hossein, H.: ‘Optimal design of a compact passive magnetic bearing based on dynamic modelling’, IET Electr. Power Appl., 2019, 13, (6), pp. 720729.
    3. 3)
      • 4. Peng, C., Zheng, S., Huang, Z., et al: ‘Complete synchronous vibration suppression for a variable speed magnetically suspended flywheel using phase lead compensation’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 58375846.
    4. 4)
      • 15. Tang, J., Peng, Z., Liu, B., et al: ‘Control of rotor's vernier-gimbaling for a magnetically suspended flywheel’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 29722981.
    5. 5)
      • 22. Cui, P.L., Li, S., Wang, Q.R., et al: ‘Harmonic current suppression of an AMB rotor system at variable rotation speed based on multiple phase-shift notch filters’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 69626969.
    6. 6)
      • 10. Feng, G., Lai, C., Kar, N.C.: ‘Speed harmonics based modeling and estimation of permanent magnet temperature for PMSM drive using kalman filter’, IEEE Trans. Ind. Inf., 2019, 15, (3), pp. 13721382.
    7. 7)
      • 11. Nonami, K., Liu, Z.: ‘Adaptive unbalance vibration control of magnetic bearing system using frequency estimation for multiple periodic disturbances with noise’. Proc. of the 1999 IEEE Int. Conf. on Control Applications, Hawai, USA, August 1999, pp. 576581.
    8. 8)
      • 14. Cui, P.L., Li, S., Zhao, G., et al: ‘Suppression of harmonic current in active–passive magnetically suspended CMG using improved repetitive controller’, IEEE/ASME Trans. Mechatronics, 2016, 21, (4), pp. 21322141.
    9. 9)
      • 21. Zheng, S.Q., Chen, Q., Ren, H.L.: ‘Active balancing control of AMB-rotor systems using a phase-shift notch filter connected in parallel mode’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 37773785.
    10. 10)
      • 5. Wang, D., Wang, N., Ye, C., et al: ‘Research on analytical bearing capacity model of active magnetic bearings based on magnetic saturation’, IET Electr. Power Appl., 2017, 11, (9), pp. 15481557.
    11. 11)
      • 7. Chen, Q., Liu, G., Han, B.C.: ‘Unbalance vibration suppression for AMBs system using adaptive notch filter’, Mech. Syst. Signal Process., 2017, 93, pp. 136150.
    12. 12)
      • 1. Sinan, B., Selim, S.: ‘Novel repulsive magnetic bearing flywheel system with composite adaptive control’, IET Electr. Power Appl., 2019, 13, (5), pp. 676685.
    13. 13)
      • 3. Chen, L., Zhu, C., Zhong, Z., et al: ‘Internal model control for the AMB high-speed flywheel rotor system based on modal separation and inverse system method’, IET Electr. Power Appl., 2019, 13, (3), pp. 349358.
    14. 14)
      • 2. Zad, H.S., Khan, T.I., Lazoglu, I.: ‘Design and adaptive sliding-mode control of hybrid magnetic bearings’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 25372547.
    15. 15)
      • 23. Dorf, R.C.: ‘Modern control systems’ (Addison-Wesley, Boston, 2011, 12th edn.).
    16. 16)
      • 18. Hutterer, M., Kalteis, G., Schrodl, M.: ‘Redundant unbalance compensation of an active magnetic bearing system’, Mech. Syst. Signal Process., 2017, 94, pp. 267278.
    17. 17)
      • 12. Jiang, K., Zhu, Z.: ‘Multi-frequency periodic vibration suppressing in active magnetic bearing-rotor systems via response matching in frequency domain’, Mech. Syst. Signal Process., 2011, 25, (4), pp. 14171429.
    18. 18)
      • 16. Mao, C., Zhu, C.S.: ‘Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 41774186.
    19. 19)
      • 19. Schuhmann, T., Hofmann, W., Werner, R.: ‘Improving operational performance of active magnetic bearings using Kalman filter and state feedback control’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 821829.
    20. 20)
      • 9. Darbandi, S.M., Behzad, M., Salarieh, H., et al: ‘Harmonic disturbance attenuation in a three-pole active magnetic bearing test rig using a modified notch filter’, J. Vib. Control, 2017, 23, (5), pp. 770781.
    21. 21)
      • 17. Hong, S.K., Langari, R.: ‘Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances’, IEEE Trans. Control Syst. Technol., 2000, 8, (2), pp. 366371.
    22. 22)
      • 20. Herzog, R., Buhler, P., Gahler, C., et al: ‘Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings’, IEEE Trans. Control Syst. Technol., 1996, 4, (5), pp. 580586.
    23. 23)
      • 13. Peng, C., Sun, J., Miao, C., et al: ‘A novel cross-feedback notch filter for synchronous vibration suppression of an MSFW with significant gyroscopic effects’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 71817190.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0392
Loading

Related content

content/journals/10.1049/iet-epa.2019.0392
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading