Optimisation design of a flux memory motor based on a new non-linear MC-DRN model

Optimisation design of a flux memory motor based on a new non-linear MC-DRN model

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, based on a magnetisation-controllable dynamic reluctance network (MC-DRN) model, an optimisation design method with an efficient modern evolution algorithm for the flux memory motor is proposed. To clarify the method conveniently, a doubly salient flux-control memory (DS-FM) motor is involved and taken as a design example. First, according to the motor topology, the detailed MC-DRN model of the DS-FM motor is built, in which the magnetisation state adjustment of the low coercivity force material is considered. During the optimisation design process, to meet the diverse design requirements of multiple operation modes, non-dominated sorting genetic II is employed to obtain the trade-off optimal design of the DS-FM motor under different magnetisation states. Moreover, to verify the feasibility of the optimisation method, the electromagnetic performances of the motor in different operation modes are investigated in detail, and the results are compared with that obtained by the finite-element method. Finally, a prototype is manufactured, and the experiments are carried out. The corresponding results not only validate the reasonability of the investigated DS-FM motor but also prove the accuracy and the effectiveness of the MC-DRN model and optimisation design method.


    1. 1)
      • 1. Cheng, M., Hua, W., Zhang, J., et al: ‘Overview of stator-permanent magnet brushless machines’, IEEE Trans. Ind. Electron., 2011, 58, (11), pp. 50875101.
    2. 2)
      • 2. Zhu, X., Shu, Z., Quan, L., et al: ‘Design and multi-condition comparison of two outer-rotor flux-switching permanent-magnet motors for in-wheel traction applications’, IEEE Trans. Ind. Electron., 2017, 64, (8), pp. 61376148.
    3. 3)
      • 3. Gao, Y., Li, D., Qu, R., et al: ‘Analysis of a novel consequent-pole flux-switching permanent magnet machine with flux bridges in stator core’, IEEE Trans. Energy Convers., 2018, 33, (4), pp. 21532162.
    4. 4)
      • 4. Soong, W.L., Miller, T.J.E.: ‘Field-weakening performance of brushless synchronous AC motor drives’, IEEE Trans. Ind. Electron., 1994, 141, (6), pp. 331340.
    5. 5)
      • 5. Wang, Y.B., Feng, Q., Li, X.L., et al: ‘Design, analysis, and experimental test of a segmented-rotor high temperature superconducting generator with stationary seal’, IEEE Trans. Ind. Electron., 2018, 65, (11), pp. 90479055.
    6. 6)
      • 6. Zhang, Z., Tao, Y., Yan, Y., et al: ‘Investigation of a new topology of hybrid excitation doubly salient brushless dc generator’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 25502556.
    7. 7)
      • 7. Wang, Y., Deng, Z., Wang, X., et al: ‘A parallel hybrid excitation flux-switching generator dc power system based on direct torque linear control’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 308317.
    8. 8)
      • 8. Ostovic, V.: ‘Memory motors’, IEEE Ind. Appl. Mag., 2003, 9, (1), pp. 5261.
    9. 9)
      • 9. Yang, H., Zhu, Z.Q., Lin, H., et al: ‘Design synthesis of switched flux hybrid-permanent magnet memory machines’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 6579.
    10. 10)
      • 10. Yang, H., Zhu, Z.Q., Lin, H., et al: ‘Comparative study of hybrid PM memory machines having single- and dual-stator configurations’, IEEE Trans. Ind. Electron., 2018, 65, (11), pp. 91689178.
    11. 11)
      • 11. Zhu, X., Quan, L., Chen, D., et al: ‘Design and analysis of a new flux memory doubly salient motor capable of online flux control’, IEEE Trans. Magn., 2011, 47, (10), pp. 32233320.
    12. 12)
      • 12. Cannas, B., Cincoui, S., Daneri, I., et al: ‘A generalization of a piece-wise linear circuit model of hysteresis’, IEEE Trans. Magn., 2002, 38, (2), pp. 901990.
    13. 13)
      • 13. Zhu, X., Xiang, Z., Quan, L., et al: ‘Multimode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 53535366.
    14. 14)
      • 14. Naderi, P.: ‘Magnetic-equivalent-circuit approach for inter-turn and demagnetization faults analysis in surface mounted permanent-magnet synchronous machines using pole specific search-coil technique’, IET Electr. Power Appl., 2018, 12, (7), pp. 916928.
    15. 15)
      • 15. Ding, L., Liu, G., Chen, Q., et al: ‘A novel mesh-based equivalent magnetic network for performance analysis and optimal design of permanent magnet machines’, IEEE Trans. Energy Convers., 2019, 65, (5), pp. 13371346.
    16. 16)
      • 16. Ojaghlu, P., Vahedi, A., Totoonchian, F.: ‘Magnetic equivalent circuit modelling of ring winding axial flux machine’, IET Electr. Power Appl., 2018, 12, (3), pp. 293300.
    17. 17)
      • 17. Song, J., Lee, J., Kim, D.W., et al: ‘Analysis and modelling of permanent magnet variable flux memory motors using magnetic equivalent circuit method’, IEEE Trans. Magn., 2017, 53, (11), Article ID: 8208905.
    18. 18)
      • 18. Song, J., Lee, J., Kim, D, et al: ‘Analysis and modeling of concentrated winding variable flux memory motor using magnetic equivalent circuit method’, IEEE Trans. Magn., 2017, 65, (5), Article ID: 8102704.
    19. 19)
      • 19. Zhu, X., Jian, Y., Xiang, Z., et al: ‘Multi-objective optimization of a permanent magnet flux-switching motor by combined parameter’, IET Electr. Power Appl., 2019, 13, (1), pp. 2430.
    20. 20)
      • 20. Chen, Q., Xu, G., Liu, G., et al: ‘Torque ripple reduction in five-phase interior permanent magnet motors by lowering interactional MMF’, IEEE Trans. Ind. Electron., 2018, 65, (11), pp. 85208531.
    21. 21)
      • 21. Zhu, X., Xiang, Z., Zhang, C., et al: ‘Co-reduction of torque ripple for outer rotor flux-switching PM motor using systematic multi-level design and control schemes’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 11021112.
    22. 22)
      • 22. Xiang, Z., Zhu, X., Quan, L., et al: ‘Multilevel design optimization and operation of a brushless double mechanical port flux-switching permanent-magnet motor’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 60426054.
    23. 23)
      • 23. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multi-objective genetic algorithm: NSGA-II’, IEEE Trans. Evol., 2002, 6, (2), pp. 182197.
    24. 24)
      • 24. Wang, Q., Niu, S., Yang, L., et al: ‘Design optimization and comparative study of novel dual-PM excited machines’, IEEE Trans. Ind. Electron., 2017, 64, (12), pp. 99249933.
    25. 25)
      • 25. Cupertino, F., Leuzzi, R., Monopoli, V.G., et al: ‘Maximisation of power density in permanent magnet machines with the aid of optimization algorithms’, IET Electr. Power Appl., 2018, 12, (6), pp. 10671074.
    26. 26)
      • 26. Zhu, X., Huang, J., Quan, L., et al: ‘Comprehensive sensitivity analysis and multi-objective optimization research of permanent magnet flux-intensifying motors’, IEEE Trans. Ind. Electron., 2019, 66, (4), pp. 26132627.

Related content

This is a required field
Please enter a valid email address