Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Broken rotor bar fault detection of the grid and inverter-fed induction motor by effective attenuation of the fundamental component

Since electrical machines are the largest consumer of electricity worldwide, their fault diagnostic at the incipient stage and condition monitoring is essential for better reliability, economy, and safety of operation. Out of several condition monitoring techniques, motor current signature analysis is gaining heightened popularity because of its non-invasive nature, the least number of sensors required and versatility of compatible algorithms. In this study, the best characteristics of infinite impulse response (IIR) filter are exploited to observe the broken rotor bar (BRB) frequencies with good legibility in current and voltage spectrum of the grid and inverter-fed motor, respectively. The causes of various harmonics in the stator current spectrum are first investigated for better understanding. The results are taken based on simulation and measurements taken from the laboratory setup. It is observed that a better tuning of IIR filters can make diagnostic algorithms capable of detecting the frequencies of interest by effectively attenuating the fundamental component and reducing its spectral leakage. Moreover, in case of direct torque control-based industrial inverter-fed motors, the current cannot be a good candidate for fault diagnostics rather the phase voltage can be effectively used for the detection of BRBs.

References

    1. 1)
      • 20. Belahcen, A., Martinez, J., Vaimann, T.: ‘Comprehensive computations of the response of faulty cage induction machines’. Int. Conf. on Electrical Machines (ICEM), Berlin, Germany, 2014, pp. 15101515.
    2. 2)
      • 1. Penrose, H.W.: ‘Test methods for determining the impact of motor condition on motor efficiency and reliability’. Old Saybrook, CT: ALL-TEST Pro, LLC, March 2007, pp. 18.
    3. 3)
      • 27. Vaimann, T., Sobra, J., Belahcen, A., et al: ‘Induction machine fault detection using smartphone recorded audible noise’, IET Sci. Meas. Technol., 2018, 12, (4), pp. 554560.
    4. 4)
      • 26. Rosales, A., Sarikhani, A., Mohammed, O.A.: ‘Evaluation of radiated electromagnetic field interference due to frequency switching in PWM motor drives by 3D finite elements’, IEEE Trans. Magn., 2011, 47, (5), pp. 14741477.
    5. 5)
      • 7. Napoles, J., Leon, J.I., Portillo, R., et al: ‘Selective harmonic mitigation technique for high-power converters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23152323.
    6. 6)
      • 10. Prieto, J., Jones, M., Barrero, F., et al: ‘Comparative analysis of discontinuous and continuous PWM techniques in VSI-fed five-phase induction motor’, IEEE Trans. Ind. Electron., 2011, 58, (12), pp. 53245335.
    7. 7)
      • 21. Wang, T., Liu, H., Zhao, L., et al: ‘Quantitative broken rotor bar fault detection for closed-loop controlled induction motors’, IET Electr. Power Appl., 2016, 10, (5), pp. 403410.
    8. 8)
      • 4. Nandi, S., Ahmed, S., Toliyat, H.A.: ‘Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages’, IEEE Trans. Energy Convers., 2001, 16, (3), pp. 253260.
    9. 9)
      • 12. Nguyen, D., Hobraiche, J., Patin, N., et al: ‘A direct digital technique implementation of general discontinuous pulse width modulation strategy’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 44454454.
    10. 10)
      • 23. Filippetti, F., Franceschini, G., Tassoni, C., et al: ‘AI techniques in induction machines diagnosis including the speed ripple effect’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 98108.
    11. 11)
      • 28. Lee, K., Shen, G., Yao, W., et al: ‘Performance characterization of random pulse width modulation algorithms in industrial and commercial adjustable-speed drives’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 10781087.
    12. 12)
      • 18. Khezzar, A., Kaikaa, M.Y., El Kamel Oumaamar, M., et al: ‘On the use of slot harmonics as a potential indicator of rotor bar breakage in the induction machine’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 45924605.
    13. 13)
      • 29. Kim, T.H., Lee, J.: ‘Comparison of the iron loss of a flux-reversal machine under four different PWM modes’, IEEE Trans. Magn., 2007, 43, (4), pp. 17251728.
    14. 14)
      • 19. Malekpour, M., Phung, B.T., Ambikairajah, E.: ‘Stator current envelope extraction for analysis of broken rotor bar in induction motors’. IEEE 11th Int. Symp. on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, Greece, 2017, pp. 240246.
    15. 15)
      • 5. Beig, A.R., Kanukollu, S., Al Hosani, K., et al: ‘Space-vector-based synchronized three-level discontinuous PWM for medium-voltage high-power VSI’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 38913901.
    16. 16)
      • 8. Oikonomou, N., Holtz, J.: ‘Closed-loop control of medium-voltage drives operated with synchronous optimal pulsewidth modulation’, IEEE Trans. Ind. Appl., 2008, 44, (1), pp. 115123.
    17. 17)
      • 15. Bossio, G.R., De Angelo, C.H., Bossio, J.M., et al: ‘Separating broken rotor bars and load oscillations on IM fault diagnosis through the instantaneous active and reactive currents’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 45714580.
    18. 18)
      • 24. Vas, P.: ‘Parameter estimation, condition monitoring, and diagnosis of electrical machines’ (Oxford Clarendron Press, USA, 1993).
    19. 19)
      • 14. Nguyen, N.-V., Nguyen, B.-X., Lee, H.-H.: ‘An optimized discontinuous PWM method to minimize switching loss for multilevel inverters’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 39583966.
    20. 20)
      • 2. Nandi, S., Toliyat, H.A., Li, X.: ‘Condition monitoring and fault diagnosis of electrical motors: a review’, IEEE Trans. Energy Convers., 2005, 20, (4), pp. 719729.
    21. 21)
      • 30. Jung, H.-S., Hwang, C.-E., Kim, H.-S., et al: ‘Minimum torque ripple pulse width modulation with reduced switching frequency for medium-voltage motor drive’, IEEE Trans. Ind. Appl., 2018, 54, (4), pp. 33153325.
    22. 22)
      • 13. Wu, Y., Shafi, M.A., Knight, A.M., et al: ‘Comparison of the effects of continuous and discontinuous PWM schemes on power losses of voltage-sourced inverters for induction motor drives’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 182191.
    23. 23)
      • 3. Hassan, O.E., Amer, M., Abdelsalam, A.K., et al: ‘Induction motor broken rotor bar fault detection techniques based on fault signature analysis – a review’, IET Electr. Power Appl., 2018, 12, (7), pp. 895907.
    24. 24)
      • 17. Ayhan, B., Trussell, H. J., Chow, M.-Y., et al: ‘On the use of a lower sampling rate for broken rotor bar detection with DTFT and AR-based spectrum methods’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 14211434.
    25. 25)
      • 9. Holmes, D.G., Lipo, T.A.: ‘Pulse width modulation for power converters: principles and practice’ (John Wiley, USA, 2003).
    26. 26)
      • 22. Hou, Z., Huang, J., Liu, H., et al: ‘Diagnosis of broken rotor bar fault in open- and closed-loop controlled wye-connected induction motors using zero-sequence voltage’, IET Electr. Power Appl., 2017, 11, (7), pp. 12141223.
    27. 27)
      • 16. Soualhi, A., Clerc, G., Razik, H.: ‘Detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 40534062.
    28. 28)
      • 25. Bellini, A., Filippetti, F., Franceschini, G., et al: ‘Quantitative evaluation of induction motor broken bars by means of electrical signature analysis’, IEEE Trans. Ind. Appl., 2001, 37, (5), pp. 12481255.
    29. 29)
      • 6. Zhang, Y., Zhao, Z., Zhu, J.: ‘A hybrid PWM applied to high-power three-level inverter-fed induction-motor drives’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 34093420.
    30. 30)
      • 11. Ojo, O.: ‘The generalized discontinuous PWM scheme for three-phase voltage source inverters’, IEEE Trans. Ind. Electron., 2004, 51, (6), pp. 12801289.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0350
Loading

Related content

content/journals/10.1049/iet-epa.2019.0350
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address