© The Institution of Engineering and Technology
This article presents a sensorless control strategy based on the linetoline excitation flux linkage for doubly salient electromagnetic machine. The negativegoing zerocrossing points of the linetoline excitation flux linkage are detected to estimate the position and speed. To solve the problems of direct current (DC) bias and error accumulation in pure integrator, a combination of firstorder lowpass filter and firstorder highpass filter is adopted to estimate the linetoline flux linkage. Considering that the selfinductance obviously varies with the position and the phase current, an equivalent inductance is introduced to calculate the linetoline excitation flux linkage in the whole period. The commutation error caused by the filter and the armature reaction is analysed and proved to be within ±6°. The proposed method can be applied to either the threestate standard angle control or the sixstate advanced angle control. The experiment platform based on a 9kW/3000rpm DSEM is built, and the validity and feasibility of the proposed strategy are proved.
References


1)

1. Liao, Y., Liang, F., Lipo, T.A.: ‘A novel permanent magnet motor with doubly salient structure’, IEEE Trans. Ind. Appl., 1995, 31, (5), pp. 1069–1078.

2)

2. Fan, Y., Chau, K.T.: ‘Design, modeling, and analysis of brushless doubly fed doubly salient machine for electric vehicle’, IEEE Trans. Ind. Appl., 2008, 44, (3), pp. 727–734.

3)

3. Chau, K.T., Cheng, M., Chan, C.C.: ‘Nonlinear magnetic circuit analysis for a novel stator doubly fed doubly salient machine’, IEEE Trans. Magn., 2002, 38, (5), pp. 2382–2384.

4)

4. Chen, Z., Wang, H., Yan, Y.: ‘A doubly salient starter/generator with twosection twistedrotor structure for potential future aerospace application’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 3588–3595.

5)

5. Yu, L., Zhang, Z., Chen, Z., et al: ‘Analysis and verification of the foubly salient brushless DC generator for automobile auxiliary power unit application’, IEEE Trans. Ind. Electron., 2014, 61, (12), pp. 6655–6663.

6)

6. Wang, Y., Zhang, Z.: ‘Investigation of a variablespeed operating doubly salient brushless generator for automobile onboard generation application’, IEEE Trans. Magn.., 2015, 51, (11), p. 8700604.

7)

7. Zhang, Z., Yan, Y., Tao, Y.: ‘A new topology of low speed doubly salient brushless DC generator for wind power generation’, IEEE Trans. Magn., 2012, 48, (3), pp. 1227–1233.

8)

8. Dai, W.L., Tian, H., Ding, J.: ‘Phaseshifted and interleaved angle control for doubly salient electromagnetic machine’. Proc. Int. Conf. Auto. Sys., Seoul, Republic of Korea, October 2014, pp. 36–41.

9)

9. Liu, W., Wang, H., Wang, Y., et al: ‘New approach to suppress torque ripple and improve output for woundexcited doubly salient machine’. Proc. Int. Conf. IEEE IECON, Florence, Italy, October 2016, pp. 2857–2861.

10)

10. Wang, Y., Zhang, Z., Liang, R., et al: ‘Torque density improvement of doubly salient electromagnetic machine with asymmetric current control’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 7434–7443.

11)

11. Jia, W., Xiao, L.: ‘Research on control strategies for doubly salient electromagnetic machine’, IET Electr. Power Appl., 2017, 11, (8), pp. 1449–1456.

12)

12. Ofori, E., Husain, T., Sozer, Y., et al: ‘A pulse injection based sensorless position estimation method for a switched reluctance machine over a wide speed range’. Proc. Int. Conf. IEEE ECCE, Denver, CO, USA, September 2013, pp. 518–524.

13)

13. Zhao, Y., Wang, H., Zhang, H., et al: ‘Positionsensorless control of DC + AC stator fed doubly salient electromagnetic motor covered full speed range’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 7412–7423.

14)

14. Zhou, X., Zhou, B., Wei, J.: ‘A novel positionsensorless startup method for DSEM’, IEEE Trans. Ind. Appl., 2018, 54, (6), pp. 6101–6109.

15)

15. Tsotoulidis, S., Vasudevan, A.: ‘A sensorless commutation technique of a brushless DC motor drive system using two terminal voltages in respect to a virtual neutral potential’. Proc. Int. Conf. IEEE ICEM, Marseille, France, September 2012, pp. 830–836.

16)

16. Lai, Y.S., Lin, Y.K.: ‘BackEMF detection technique of brushless DC motor drive for wide range control’. Proc. Int. Conf. IEEE IECON, Paris, France, 2006, pp. 1006–1011.

17)

17. Zhou, X., Zhou, B., Guo, H., et al: ‘Research on sensorless and advanced angle control strategies for doubly salient electromagnetic motor’, IET Electr. Power Appl., 2016, 10, (5), pp. 375–383.

18)

18. Zhou, X., Zhou, B., Yang, L.: ‘Position sensorless control for doubly salient electromagnetic motor based on linetoline voltage’, IET Electron. Power Appl., 2018, 12, (1), pp. 81–90.

19)

19. Alin, S., Boldea, I., Andreescu, G.D.: ‘Motionsensorless control of BLDCPM motor with offline FEMinformationassisted position and speed observer’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 1950–1985.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietepa.2019.0322
Related content
content/journals/10.1049/ietepa.2019.0322
pub_keyword,iet_inspecKeyword,pub_concept
6
6