access icon free Sensorless control strategy for doubly salient electro-magnetic machine based on the line-to-line excitation flux linkage

This article presents a sensorless control strategy based on the line-to-line excitation flux linkage for doubly salient electro-magnetic machine. The negative-going zero-crossing points of the line-to-line excitation flux linkage are detected to estimate the position and speed. To solve the problems of direct current (DC) bias and error accumulation in pure integrator, a combination of first-order low-pass filter and first-order high-pass filter is adopted to estimate the line-to-line flux linkage. Considering that the self-inductance obviously varies with the position and the phase current, an equivalent inductance is introduced to calculate the line-to-line excitation flux linkage in the whole period. The commutation error caused by the filter and the armature reaction is analysed and proved to be within ±6°. The proposed method can be applied to either the three-state standard angle control or the six-state advanced angle control. The experiment platform based on a 9-kW/3000-rpm DSEM is built, and the validity and feasibility of the proposed strategy are proved.

Inspec keywords: low-pass filters; magnetic flux; sensorless machine control; electric machines; high-pass filters; commutation

Other keywords: sensorless control strategy; phase current; three-state standard angle control; error accumulation; DC bias; equivalent inductance; line-to-line excitation flux linkage; doubly salient electro-magnetic machine; first-order high-pass filter; first-order low-pass filter; power 9.0 kW; commutation error; armature reaction; zero-crossing points

Subjects: Control of electric power systems; d.c. machines; a.c. machines

References

    1. 1)
      • 12. Ofori, E., Husain, T., Sozer, Y., et al: ‘A pulse injection based sensorless position estimation method for a switched reluctance machine over a wide speed range’. Proc. Int. Conf. IEEE ECCE, Denver, CO, USA, September 2013, pp. 518524.
    2. 2)
      • 3. Chau, K.T., Cheng, M., Chan, C.C.: ‘Nonlinear magnetic circuit analysis for a novel stator doubly fed doubly salient machine’, IEEE Trans. Magn., 2002, 38, (5), pp. 23822384.
    3. 3)
      • 4. Chen, Z., Wang, H., Yan, Y.: ‘A doubly salient starter/generator with two-section twisted-rotor structure for potential future aerospace application’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 35883595.
    4. 4)
      • 18. Zhou, X., Zhou, B., Yang, L.: ‘Position sensorless control for doubly salient electro-magnetic motor based on line-to-line voltage’, IET Electron. Power Appl., 2018, 12, (1), pp. 8190.
    5. 5)
      • 13. Zhao, Y., Wang, H., Zhang, H., et al: ‘Position-sensorless control of DC + AC stator fed doubly salient electromagnetic motor covered full speed range’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 74127423.
    6. 6)
      • 15. Tsotoulidis, S., Vasudevan, A.: ‘A sensorless commutation technique of a brushless DC motor drive system using two terminal voltages in respect to a virtual neutral potential’. Proc. Int. Conf. IEEE ICEM, Marseille, France, September 2012, pp. 830836.
    7. 7)
      • 10. Wang, Y., Zhang, Z., Liang, R., et al: ‘Torque density improvement of doubly salient electromagnetic machine with asymmetric current control’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 74347443.
    8. 8)
      • 5. Yu, L., Zhang, Z., Chen, Z., et al: ‘Analysis and verification of the foubly salient brushless DC generator for automobile auxiliary power unit application’, IEEE Trans. Ind. Electron., 2014, 61, (12), pp. 66556663.
    9. 9)
      • 11. Jia, W., Xiao, L.: ‘Research on control strategies for doubly salient electromagnetic machine’, IET Electr. Power Appl., 2017, 11, (8), pp. 14491456.
    10. 10)
      • 17. Zhou, X., Zhou, B., Guo, H., et al: ‘Research on sensorless and advanced angle control strategies for doubly salient electro-magnetic motor’, IET Electr. Power Appl., 2016, 10, (5), pp. 375383.
    11. 11)
      • 19. Alin, S., Boldea, I., Andreescu, G.-D.: ‘Motion-sensorless control of BLDC-PM motor with offline FEM-information-assisted position and speed observer’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 19501985.
    12. 12)
      • 7. Zhang, Z., Yan, Y., Tao, Y.: ‘A new topology of low speed doubly salient brushless DC generator for wind power generation’, IEEE Trans. Magn., 2012, 48, (3), pp. 12271233.
    13. 13)
      • 1. Liao, Y., Liang, F., Lipo, T.A.: ‘A novel permanent magnet motor with doubly salient structure’, IEEE Trans. Ind. Appl., 1995, 31, (5), pp. 10691078.
    14. 14)
      • 9. Liu, W., Wang, H., Wang, Y., et al: ‘New approach to suppress torque ripple and improve output for wound-excited doubly salient machine’. Proc. Int. Conf. IEEE IECON, Florence, Italy, October 2016, pp. 28572861.
    15. 15)
      • 8. Dai, W.L., Tian, H., Ding, J.: ‘Phase-shifted and interleaved angle control for doubly salient electro-magnetic machine’. Proc. Int. Conf. Auto. Sys., Seoul, Republic of Korea, October 2014, pp. 3641.
    16. 16)
      • 6. Wang, Y., Zhang, Z.: ‘Investigation of a variable-speed operating doubly salient brushless generator for automobile on-board generation application’, IEEE Trans. Magn.., 2015, 51, (11), p. 8700604.
    17. 17)
      • 2. Fan, Y., Chau, K.T.: ‘Design, modeling, and analysis of brushless doubly fed doubly salient machine for electric vehicle’, IEEE Trans. Ind. Appl., 2008, 44, (3), pp. 727734.
    18. 18)
      • 16. Lai, Y.-S., Lin, Y.-K.: ‘Back-EMF detection technique of brushless DC motor drive for wide range control’. Proc. Int. Conf. IEEE IECON, Paris, France, 2006, pp. 10061011.
    19. 19)
      • 14. Zhou, X., Zhou, B., Wei, J.: ‘A novel position-sensorless start-up method for DSEM’, IEEE Trans. Ind. Appl., 2018, 54, (6), pp. 61016109.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0322
Loading

Related content

content/journals/10.1049/iet-epa.2019.0322
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading