access icon free Quad-bus motor drive system for electrified vehicles based on a dual-output–single-inductor structure

48 V electric system architecture has been recently introduced to accommodate an increasing number of electric components in mild hybrid electric vehicles. In this study, two additional DC buses are added for electric machines including 36 and 24 V AC- and DC-motor/actuator loads, in a 48/12 V power supply system. This structure can yield significant benefits, especially for electrified vehicles that have more electric machines and actuators. A single-inductor multi-output structure is employed, with a control strategy that produces linear transfer functions and is less sensitive to load variation, to accommodate multiple-bus motor/actuator drives. The proposed structure and control strategy can offer options for selecting proper bus voltages, optimising the electric machine's power density. Both simulations and experiments have been performed to verify the system structure and control schemes using 36 and 24 V electric machines connected to the additional dual-output buses on top of the existing 12/48 V bus structure.

Inspec keywords: DC motor drives; hybrid electric vehicles; actuators; transfer functions

Other keywords: electric machines; dual-output buses; voltage 36.0 V; voltage 24.0 V; electric components; voltage 12.0 V; multiple-bus motor-actuator drives; actuator loads; control strategy; electric machine power density optimization; linear transfer functions; electrified vehicles; single-inductor multioutput structure; dual-output–single-inductor structure; system structure; electric system architecture; DC buses; hybrid electric vehicles; voltage 48.0 V; quad-bus motor drive system; DC-motor

Subjects: Transportation system control; Drives; Transportation; d.c. machines; Actuating and final control devices

References

    1. 1)
      • 17. Patra, P., Ghosh, J., Patra, A.: ‘Control scheme for reduced cross-regulation in single-inductor–multiple-output DC–DC converters’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 50955104.
    2. 2)
      • 23. Chen, W.C., Su, Y.P., Huang, T.C., et al: ‘Single-inductor quad-output switching converter with priority-scheduled program for fast transient response and unlimited load range in 40 nm CMOS technology’, IEEE J. Solid-State Circuits, 2015, 50, (7), pp. 15251539.
    3. 3)
      • 10. Lin, R.L., Pan, C.R., Liu, K.H.: ‘Family of single-inductor multi-output DC–DC converters’. 2009 Int. Conf. Power Electronics and Drive Systems (PEDS), Taipei, Taiwan, 2009, pp. 12161221.
    4. 4)
      • 28. Sul, S.-K.: ‘Control of electric machine drive systems’ (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011).
    5. 5)
      • 29. ‘Texas Instruments Technical Report – PMSM3_2: 3-Phase sensorless field oriented control’. Available at http://www.ti.com/tool/SPRC128, accessed 15 January 2018 .
    6. 6)
      • 15. Chen, Y.-T., Chen, D.Y., Wu, Y.-P., et al: ‘Small-signal modeling of multiple-output forward converters with current-mode control’, IEEE Trans. Power Electron., 1996, 11, (1), pp. 122131.
    7. 7)
      • 16. Lin, K.-Y., Huang, C.-S., Chen, D., et al: ‘Modeling and design of feedback loops for a voltage-mode single-inductor–dual-output buck converter’. 2008 IEEE Power Electronics Specialists Conf., Rhodes, Greece, 2008, pp. 33893395.
    8. 8)
      • 22. Lee, Y.H., Huang, T.C., Yang, Y.Y., et al: ‘Minimized transient and steady-state cross-regulation in 55-nm CMOS single-inductor–dual-output (SIDO) step-down DC–DC converter’, IEEE J. Solid-State Circuits, 2011, 46, (11), pp. 24882499.
    9. 9)
      • 2. ‘Versatile and efficient: mild-hybrid technology – Audi Media Center’. Available at https://www.audi-mediacenter.com/en/techday-on-combustion-engine-technology-8738/versatile-and-efficient-mild-hybrid-technology-8761, accessed 12 January 2019.
    10. 10)
      • 24. Solis, C.J., Rincón-Mora, G.A.: ‘0.6 μm CMOS-switched-inductor dual-supply hysteretic current-mode buck converter’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 23872394.
    11. 11)
      • 26. Sun, W., Han, C., Yang, M., et al: ‘A ripple control dual-mode single-inductor–dual-output buck converter with fast transient response’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (1), pp. 107117.
    12. 12)
      • 27. Sreekumar, T., Jiji, K.S.: ‘Comparison of proportional–integral (P–I) and integral–proportional (I–P) controllers for speed control in vector controlled induction motor drive’. 2012 Second Int. Conf. Power, Control and Embedded Systems, Allahabad, India, 2012, pp. 16.
    13. 13)
      • 12. Ma, D., Ki, W.-H., Tusi, C.-Y.: ‘A pseudo-CCM/DCM SIMO switching converter with freewheel switching’, IEEE J. Solid-State Circuits, 2003, 38, (6), pp. 10071014.
    14. 14)
      • 13. Trevisan, D., Mattavelli, P., Tenti, P.: ‘Digital control of single-inductor–multiple-output step-down DC–DC converters in CCM’, IEEE Trans. Ind. Electron., 2008, 55, (9), pp. 34763483.
    15. 15)
      • 20. Chen, G., Jin, Z., Deng, Y., et al: ‘Principle and topology synthesis of integrated single-input dual-output and dual-input single-output DC–DC converters’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 38153825.
    16. 16)
      • 1. ‘VW, PSA, Volvo, others adopt 48 V mild hybrids in response to diesel decline – Automotive News Europe’. Available at https://www.autonews.com/article/20170925/COPY01/309259965/vw-psa-volvo-others-adopt-48-volt-mild-hybrids-in-response-to-diesel-decline, accessed 12 January 2019.
    17. 17)
      • 18. Kim, T., Baek, S.: ‘Multiple bus motor drive based on a single inductor multi-output converter in 48 V electrified vehicles’. 2017 IEEE Int. Electric Machines and Drives Conf. (IEMDC), Miami, FL, USA, 2017, pp. 16.
    18. 18)
      • 9. Cai, W.: ‘Comparison and review of electric machines for integrated starter alternator applications’. IEEE Industry Applications Conf., Seattle, WA, USA, 2004, p. 393.
    19. 19)
      • 3. Rick, A., Sisk, B.: ‘A simulation based analysis of 12 and 48 V microhybrid systems across vehicle segments and drive cycles’. SAE Technical Paper no. 2015-01-1151, 2015.
    20. 20)
      • 21. Kim, J., Kim, D.S., Kim, C.: ‘A single-inductor eight-channel output DC–DC converter with time-limited power distribution control and single shared hysteresis comparator’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (12), pp. 33543367.
    21. 21)
      • 7. Asano, K., Inaguma, Y., Ohtani, H., et al: ‘High performance motor drive technologies for hybrid vehicles’. 2007 Power Conversion Conf., Nagoya, Japan, 2007, pp. 15841589.
    22. 22)
      • 8. Millo, F., Mallamo, F., Pautasso, E., et al: ‘The potential of electric exhaust gas turbocharging for HD diesel engines’. SAE Technical Paper no. 2006-01-0437, 2006.
    23. 23)
      • 19. Wang, Y., Xu, J., Xu, D.: ‘Effect of circuit parameters on the stability and boundaries of peak current-mode single-inductor–dual-output buck converters’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 54455455.
    24. 24)
      • 14. Pizzutelli, A., Ghioni, M.: ‘Novel control technique for single inductor multiple output converters operating in CCM with reduced cross-regulation’. IEEE Applied Power Electronics Conf., Dallas, TX, USA, February 2008, pp. 15021507.
    25. 25)
      • 25. Xu, W., Li, Y., Gong, X., et al: ‘A dual-mode single-inductor–dual-output switching converter with small ripple’, IEEE Trans. Power Electron., 2010, 25, (3), pp. 614623.
    26. 26)
      • 6. Bojoi, R., Cavagnino, A., Cossale, M., et al: ‘Multiphase starter generator for a 48 V mini-hybrid powertrain: design and testing’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 17501758.
    27. 27)
      • 5. Liu, Z., Onori, S., Ivanco, A.: ‘Synthesis and experimental validation of battery aging test profiles based on real-world duty cycles for 48 V mild hybrid vehicles’, IEEE Trans. Veh. Technol., 2017, 66, (10), pp. 87028709.
    28. 28)
      • 4. Lenhart-Rydzek, M., Rau, M., Ebert, M.: ‘Requirements and protection within a 48 V automotive wiring system’. SAE Technical Paper no. 2015-01-0236, 2015.
    29. 29)
      • 11. Ma, D., Ki, W.-H., Tsui, C.-Y., et al: ‘Single-inductor–multiple-output switching converters with time-multiplexing control in discontinuous conduction mode’, IEEE J. Solid-State Circuits, 2003, 38, (1), pp. 89100.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0295
Loading

Related content

content/journals/10.1049/iet-epa.2019.0295
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading