access icon free Influence of a novel flux-absorbing structure on the performance of a surface-mounted permanent-magnet motor with overhang

The demand for surface-mounted permanent-magnet (SPM) motors with high torque and power densities has increased as these motors are becoming more widely used in applications requiring high performance in limited spaces, such as electric vehicles and robot arms. Some studies have increased the torque and power densities, such as hybrid flux permanent-magnet motors utilising radial and axial magnetic fluxes, dual-rotor and dual-stator permanent-magnet motors. Although these motors offer high performance, there are some problems such as low productivity and poor applicability to small motors have arisen due to their complicated structures. An overhang structure can be a simple and effective means of solving the aforementioned problems. However, the overhang effects do not increase linearly but tend to converge as the length of the overhang increases. Therefore, a novel flux-absorbing structure (FAS) that effectively enhances the overhang effects of SPM motors even in cases with considerable overhang was proposed. The magnetic flux path from the overhang to the stator can be efficiently improved via the proposed FAS. Thereby, the performances of a SPM motor can be effectively enhanced when the FAS is adopted. The effectiveness of the proposed FAS was verified via a 3D finite-element analysis and in experiments.

Inspec keywords: rotors; permanent magnet motors; magnetic flux; stators; finite element analysis; permanent magnet machines; torque

Other keywords: axial magnetic fluxes; SPM motor; complicated structures; FAS; overhang increases; overhang structure; surface-mounted permanent-magnet motor; high torque; overhang effects; simple means; hybrid flux permanent-magnet motors; dual-stator permanent-magnet motors; poor applicability; radial fluxes; magnetic flux path; dual-rotor; considerable overhang; power densities; novel flux-absorbing structure

Subjects: Finite element analysis; d.c. machines; a.c. machines

References

    1. 1)
      • 20. Ronghai, Q., Thomas, A.L.: ‘Dual-rotor, radial-flux, toroidally wound, permanent-magnet machines’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 16651673.
    2. 2)
      • 6. Zhang, W., Yu, Z., Chen, X., et al: ‘The magneto-thermal analysis of a high torque density joint motor for humanoid robots’. Proc. IEEE-RAS 15th Int. Conf. on Humanoid Robots, Beijing, People's Republic of China, November 2018, pp. 112117.
    3. 3)
      • 31. Chapman, S.J.: ‘Electrical machinery fundamentals’ (McGraw-Hill Press, New York City, NY, USA, 1998).
    4. 4)
      • 32. Krause, P., Wasynczuk, O., Sudhoff, S.D., et al: ‘Analysis of electric machinery and drive systems’ (John Wiley & Sons Press, Piscataway, NJ, USA, 2013).
    5. 5)
      • 18. Ishikawa, T., Amada, S., Segawa, K., et al: ‘Proposal of a radial- and axial-flux permanent-magnet synchronous generator’, IEEE Trans. Magn., 2017, 53, (6), pp. 14.
    6. 6)
      • 29. Yeo, H.K., Park, H.J., Seo, J.M., et al: ‘Electromagnetic and thermal analysis of a surface-mounted permanent-magnet motor with overhang structure’, IEEE Trans. Magn., 2017, 53, (6), pp. 14.
    7. 7)
      • 9. Yang, Z., Shang, F., Brown, I.P., et al: ‘Comparative study of interior permanent magnet induction and switched reluctance motor drives for EV and HEV applications’, IEEE Trans. Transp. Electr., 2015, 1, (3), pp. 245254.
    8. 8)
      • 3. Salcic, Z., Atmojo, U.D, Park, H., et al: ‘Designing dynamic and collaborative automation and robotics software systems’, IEEE Trans. Ind. Inf., 2019, 15, (1), pp. 540549.
    9. 9)
      • 28. Yeo, H.K., Lim, D.K., Woo, D.K., et al: ‘Magnetic equivalent circuit model considering overhang structure of a surface-mounted permanent-magnet motor’, IEEE Trans. Magn., 2015, 51, (3), pp. 14.
    10. 10)
      • 33. Seo, J.M., Jung, I.S., Jung, H.K, et al: ‘Analysis of overhang effect for a surface-mounted permanent magnet machine using a lumped magnetic circuit model’, IEEE Trans. Magn., 2014, 50, (5), pp. 17.
    11. 11)
      • 12. Pindoriya, R.M., Rajpurohit, B.S., Kumar, R., et al: ‘Comparative analysis of permanent magnet motors and switched reluctance motors capabilities for electric and hybrid electric vehicles’. Proc. IEEMA Engineer Infinite Conf., New Delhi, India, March 2018, pp. 16.
    12. 12)
      • 4. Friedrich, C., Csiszar, A., Lechler, A., et al: ‘Efficient task and path planning for maintenance automation using a robot system’, IEEE Trans. Autom. Sci. Eng., 2018, 15, (3), pp. 12051215.
    13. 13)
      • 22. Wang, Y., Cheng, M., Chen, M., et al: ‘Design of high-torque-density double-stator permanent magnet brushless motors’, IET J. Electr. Power Appl., 2011, 5, (3), pp. 317323.
    14. 14)
      • 11. Kammermann, J., Bolvashenkov, I., Herzog, H.G.: ‘Approach for comparative analysis of electric traction machines’. Proc. IEEE Int. Conf. on Electrical Systems for Aircraft, Railway, Ship, Propulsion Road Vehicles, Aachen, Germany, March 2015, pp. 15.
    15. 15)
      • 26. Yeo, H.K., Woo, D.K., Lim, D.K., et al: ‘Analysis of a surface-mounted permanent-magnet machine with overhang structure by using a novel equivalent magnetic circuit model’, J. Electr. Eng. Technol., 2014, 9, (6), pp. 19601966.
    16. 16)
      • 27. Hwang, K. Y., Lin, H., Rhyu, S.H., et al: ‘A study on the novel coefficient modeling for a skewed permanent magnet and overhang structure for optimal design of brushless DC motor’, IEEE Trans. Magn., 2012, 48, (5), pp. 19181923.
    17. 17)
      • 5. Hong, D.K., Hwang, W., Lee, J.Y., et al: ‘Design, analysis, and experimental validation of a permanent magnet synchronous motor for articulated robot applications’, IEEE Trans. Magn., 2018, 54, (3), pp. 14.
    18. 18)
      • 24. Woo, D.K., Lim, D.K., Yeo, H.K., et al: ‘A 2-D finite-element analysis for a permanent magnet synchronous motor taking an overhang effect into consideration’, IEEE Trans. Magn., 2013, 49, (8), pp. 48944899.
    19. 19)
      • 23. Wang, J.P., Lieu, D.K., Lorimer, W.L., et al: ‘Influence of the permanent magnet overhang on the performance of the brushless dc motor’, J. Appl. Phys., 1998, 83, pp. 63626364.
    20. 20)
      • 1. Asadi, E., Li, B., Chen, I.M.: ‘Pictobot: a cooperative painting robot for interior finishing of industrial developments’, IEEE Robot. Autom. Mag., 2018, 25, (2), pp. 8294.
    21. 21)
      • 17. Shimomura, S., Sunaga, T.: ‘Design of integrated radial and dual axial-flux ferrite magnet synchronous machine’. 2016 IEEE Energy Conversion Congress and Exposition, Milwaukee, MI, USA, September 2016, pp. 16.
    22. 22)
      • 2. Robla-Gómez, S., Becerra, V.M., Llata, J.R., et al: ‘Working together a review on safe human-robot collaboration in industrial environments’, IEEE Access, 2017, 5, pp. 2675426773.
    23. 23)
      • 30. Yeo, H.-K., Lim, D.-K., Jung, H.-K.: ‘Magnetic equivalent circuit model considering the overhang structure of an interior permanent-magnet machine’, IEEE Trans. Magn., 2019, 55, (6), (early access).
    24. 24)
      • 16. Seo, J.M., Ro, J.S., Rhyu, S.H., et al: ‘Novel hybrid radial and axial flux permanent-magnet machine using integrated windings for high-power density’, IEEE Trans. Magn., 2015, 51, (3), pp. 14.
    25. 25)
      • 19. Mudhigollam, U.K., Choudhury, U., Hatua, K.: ‘High power density multiple output permanent magnet alternator’, IET Electr. Power Appl., 2018, 12, (4), pp. 494501.
    26. 26)
      • 14. Novotny, D.W., Lipo, T.A.: ‘Vector control and dynamics of AC drives’ (Clarendon Press, London, UK, 1996).
    27. 27)
      • 8. Zhang, W., Yu, Z., Chen, X., et al: ‘Electromagnetic design of a high torque density permanent magnet motor for biomimetic robot’. Proc. Int. Conf. on Cyborg and Bionic Systems, Beijing, People's Republic of China, October 2017, pp. 140144.
    28. 28)
      • 25. Song, J.Y., Lee, J.H., Kim, Y.J., et al: ‘Computational method of effective remanence flux density to consider PM overhang effect for spoke-type PM motor with 2-D analysis using magnetic energy’, IEEE Trans. Magn., 2016, 52, (3), pp. 14.
    29. 29)
      • 10. Grunditz, E.A., Thiringer, T.: ‘Performance analysis of current BEVs based on a comprehensive review of specifications’, IEEE Trans. Transp. Electr., 2016, 2, (3), pp. 270289.
    30. 30)
      • 15. Sul, S.K.: ‘Control of electric machine drive systems’ (John Wiley & Sons Press, Hoboken, NJ, USA, 2011).
    31. 31)
      • 7. Seo, J.M., Rhyu, S.H., Kim, J.H., et al: ‘Design of axial flux permanent magnet brushless DC motor for robot joint module’. Proc. Int. Power Electronics Conf., Sapporo, Japan, June 2010, pp. 13361340.
    32. 32)
      • 13. Yang, C., Zhang, Y., Qiu, H.: ‘Influence of output voltage harmonic of inverter on loss and temperature field of permanent magnet synchronous motor’, IEEE Trans. Magn., 2019, 55, (6), (early access).
    33. 33)
      • 21. Niu, S., Chau, K.T.: ‘Quantitative comparison of double-stator and traditional permanent magnet brushless machines’, J. Appl. Phys., 2009, 7, pp. 13.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0291
Loading

Related content

content/journals/10.1049/iet-epa.2019.0291
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading