Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analytical validation of novel consequent pole E-core stator permanent magnet flux switching machine

Flux switching machines (FSMs) encompass unique features of conventional direct current machine, permanent magnet (PM) synchronous machine and switch reluctance machine. Permanent magnet FSM (PMFSM) is capable of high torque density and applicable for high-speed application, however conventional PMFSM exhibits demerits of high PM volume, high torque ripples and significant stator flux leakage. In this paper, a novel consequent pole E-core stator PMFSM is proposed and compared with conventional topology utilising 2D finite-element analysis (2D-FEA). Finite-element analysis revealed that proposed design enhanced flux modulation effects by introducing flux bridges and flux barriers as a result reduced cogging torque by reducing 46.53% of the total PM volume, reduce torque ripples by reducing PM slot effects and reduce flux leakage utilising flux bridges in the stator. Furthermore, analytical model for flux linkages, cogging torque, mechanical torque, no load and on-load magnetic flux density (MFD) is developed for initial design of conventional and proposed model. 2D analytical methodologies resolve equivalent magnetic circuits for open-circuit flux linkages, Fourier analysis for cogging torque, Laplace equations for MFD and Maxwell stress tensor for mechanical torque. Finally, results obtained from 2D-FEA and analytical methodologies are validated and compared.

References

    1. 1)
      • 25. Ho, S., Niu, S., Fu, W.: ‘Design and comparison of vernier permanent magnet machines’, IEEE Trans. Magn., 2011, 47, (10), pp. 32803283.
    2. 2)
      • 2. Tiang, T.L., Ishak, D., Lim, C.P., et al: ‘A comprehensive analytical subdomain model and its field solutions for surface-mounted permanent magnet machines’, IEEE Trans. Magn., 2015, 51, (4), pp. 114.
    3. 3)
      • 18. Pang, Y., Zhu, Z., Howe, D., et al: ‘Eddy current loss in the frame of a flux-switching permanent magnet machine’, IEEE Trans. Magn., 2006, 42, (10), pp. 34133415.
    4. 4)
      • 19. Zhu, Z., Pang, Y., Howe, D., et al: ‘Analysis of electromagnetic performance of flux switching permanent-magnet machines by nonlinear adaptive lumped parameter magnetic circuit model’, IEEE Trans. Magn., 2005, 41, (11), pp. 42774287.
    5. 5)
      • 3. Zhu, Z.Q., Wu, L.J., Xia, Z.P.: ‘An accurate subdomain model for magnetic field computation in slotted surface mounted permanent-magnet machines’, IEEE Trans. Magn., 2010, 46, (4), pp. 11001115.
    6. 6)
      • 13. Yang, H., Lyu, S., Zhu, Z.Q., et al: ‘Novel dual-stator machines with biased permanent magnet excitation’, IEEE Trans. Energy Convers., 2018, 33, (4), pp. 20702080.
    7. 7)
      • 27. Roters, H.C.: ‘Electromagnetic devices’ (J. Wiley &Sons, Inc., New York, Chapman &Hall, Limited, London, 1941).
    8. 8)
      • 16. Zhao, G., Hua, W.: ‘A novel flux-switching permanent magnet machine with v-shaped magnets’, AIP Adv., 2017, 7, (5), pp. 056655-1056655-5.
    9. 9)
      • 4. Zhu, Z.Q., Chen, J.T.: ‘Advanced flux-switching permanent magnet brushless machines’, IEEE Trans. Magn., 2010, 46, (6), pp. 14471453.
    10. 10)
      • 17. Zhang, L., Wu, L.J., Huang, X., et al: ‘A novel structure of doubly salient permanent magnet machine in square envelope’, IEEE Trans. Magn., 2019, 55, (6), pp. 15.
    11. 11)
      • 20. Gaussens, B., Hoang, E., de la Barriere, O., et al: ‘Analytical approach for air-gap modelling of field-excited flux-switching machine: no-load operation’, IEEE Trans. Magn., 2012, 48, (9), pp. 25052517.
    12. 12)
      • 5. Chen, J.T., Zhu, Z.Q., Iwasaki, S., et al: ‘A novel E-core switched-flux PM brushless AC machine’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12731282.
    13. 13)
      • 9. Mo, L., Zhang, T., Lu, Q.: ‘Design and analysis of an outer-rotor-permanent-magnet flux-switching machine for electric vehicle applications’, IEEE Trans. Appl. Supercond., 2019, 29, (2), pp. 15.
    14. 14)
      • 23. Ullah, N., Kashif Khan, M., Khan, F., et al: ‘Comparison of analytical methodologies for analysis of single sided linear permanent magnet flux switching machine: no-load operation’, Appl. Comput. Electromagn. Soc., 2018, 33, (8), pp. 923930.
    15. 15)
      • 28. Ostovic, V.: ‘Dynamics of saturated electric machines’ (Springer-Verlag New York Inc., Berlin Heidelberg, Germany, 1989).
    16. 16)
      • 12. Hussain, M., Khan, F., Ali, S., et al: ‘Fault analysis of dual rotor permanent magnet flux switching machine’. 2018 Int. Conf. on Computing, Electronic and Electrical Engineering (ICE Cube), Quetta, 2018, pp. 15.
    17. 17)
      • 6. Rauch, S.E., Johnson, L.J.: ‘Design principles of flux-switching alternators’, AIEE Trans., 1955, 74, pt. III, (3), pp. 12611268.
    18. 18)
      • 22. Ullah, N., Khan, F., Ullah, W., et al: ‘Analytical modelling of open-circuit flux linkage, cogging torque and electromagnetic torque for design of switched flux permanent magnet machine’, J. Magn., 2018, 23, (2), pp. 253266.
    19. 19)
      • 10. Ahmad, N., Khan, F., Rehman, N.U., et al: ‘Design consideration of inner and outer rotor flux switching machine’. 2018 Int. Conf. on Power Generation Systems and Renewable Energy Technologies (PGSRET), Islamabad, Pakistan, 2018, pp. 15.
    20. 20)
      • 14. Du, Y., Zhang, C., Zhu, X., et al: ‘Principle and analysis of doubly salient PM motor with π-shaped stator iron core segments’, IEEE Trans. Ind. Electron., 2019, 66, (3), pp. 19621972.
    21. 21)
      • 26. Ullah, N., Khan, F., Ullah, W., et al: ‘Magnetic equivalent circuit models using global reluctance networks methodology for design of permanent magnet flux switching machine’. 15th Int. Bhurban Conf. on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2018, pp. 397404.
    22. 22)
      • 15. Zhao, G., Hua, W.: ‘Comparative study between a novel multi-tooth and a V-shaped flux-switching permanent magnet machines’, IEEE Trans. Magn., 2019, 55, pp. 18, doi: 10.1109/TMAG.2019.2900749.
    23. 23)
      • 7. Hoang, E., Ben-Ahmed, A.H., Lucidarme, J.: ‘Switching flux permanent magnet poly-phased synchronous machines’. Proc. 7th European Conf. Power Electronics Applications, Trondheim, Norway, 1997, pp. 903908.
    24. 24)
      • 11. Mo, L., Zhu, X., Zhang, T., et al: ‘Temperature rise calculation of a flux-switching permanent-magnet double-rotor machine using electromagnetic-thermal coupling analysis’, IEEE Trans. Magn., 2018, 54, (3), pp. 14.
    25. 25)
      • 24. Gao, Y., Li, D., Qu, R., et al: ‘Analysis of a novel consequent-pole flux switching permanent magnet machine with flux bridges in stator core’, IEEE Trans. Energy Convers., 2018, 33, (4), pp. 21532162.
    26. 26)
      • 30. Wang, D., Wang, X., Jung, S.: ‘Reduction on cogging torque in flux-switching permanent magnet machine by teeth notching schemes’, IEEE Trans. Magn., 2012, 48, (11), pp. 42284231.
    27. 27)
      • 8. Cheng, M., Wen, H., Han, P., et al: ‘Analysis of airgap field modulation principle of simple salient Poles’, IEEE Trans. Ind. Electron., 2019, 66, (4), pp. 26282638.
    28. 28)
      • 32. Zarko, D., Ban, D., Lipo, T.A.: ‘Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance’, IEEE Trans. Magn., 2006, 42, (7), pp. 18281837.
    29. 29)
      • 21. Gysen, B.L.J., Ilhan, E., Meessen, K.J., et al: ‘Modelling of flux switching permanent magnet machines with Fourier analysis’, IEEE Trans. Magn., 2010, 46, (6), pp. 14991502.
    30. 30)
      • 31. Zarko, D., Ban, D., Lipo, T.A.: ‘Analytical solution for cogging torque in surface permanent-magnet motors using conformal mapping’, IEEE Trans. Magn., 2008, 44, (1), pp. 5265.
    31. 31)
      • 29. Chuaand, L.O., Lin, P.M.: ‘Computer-aided analysis of electronic circuits-algorithms and computational techniques’ (Prentice Hall, Englewood Cliffs, NJ, USA, 1975).
    32. 32)
      • 1. Liu, Z.J., Li, J.T.: ‘Analytical solution of air-gap field in permanent magnet motors taking into account the effect of pole transition over slots’, IEEE Trans. Magn., 2007, 43, (10), pp. 38723883.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0257
Loading

Related content

content/journals/10.1049/iet-epa.2019.0257
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address