access icon free Use of a scaling power law to incorporate asymmetrical minor loops in the inverse Jiles–Atherton model

Magnetic material characterisation and modelling are important for investigating losses and analysing the transient behaviour of electrical systems. This study attempts to contribute in modelling of magnetic materials under conditions of arbitrary flux waveforms. A simple modification of the inverse Jiles–Atherton model for accurately estimating losses in magnetic materials under asymmetrical minor loops is described. The additional losses due to minor loops are mainly due to irreversible domain wall displacements. The modelling presented in this work is based on a scaling power law, which ensures the closure of minor loops and allows better representation of the hysteresis behaviour. The proposed algorithm is verified by modelling hysteresis loops with multiple harmonics associated with pulse width modulated waveforms.

Inspec keywords: magnetic domain walls; magnetic leakage; eddy current losses; magnetic hysteresis

Other keywords: pulse width modulated waveforms; asymmetrical minor loops; domain wall; scaling power law; magnetic materials; hysteresis loops; inverse Jiles-Atherton model; arbitrary flux waveforms; multiple harmonics; magnetic material

Subjects: Magnetic domain walls and domain structure; Magnetization curves, hysteresis, Barkhausen and related effects

References

    1. 1)
      • 3. Barbisio, E., Fiorillo, F., Ragusa, C.: ‘Predicting loss in magnetic steels under arbitrary induction waveform and with minor hysteresis loops’, IEEE Trans. Magn., 2004, 40, (4), pp. 18101819.
    2. 2)
      • 12. Mayergoyz, I.: ‘Mathematical models of hysteresis’, IEEE Trans. Magn., 1986, 22, (5), pp. 603608.
    3. 3)
      • 19. Hussain, S., Lowther, D.: ‘The prediction of iron losses under PWM excitation using the classical Preisach model’, COMPEL – Int. J. Comput. Math. Electr. Electron. Eng., 2016, 35, (6), pp. 19962006.
    4. 4)
      • 25. Chwastek, K., Szczygłowski, J., Wilczyǹski, W.: ‘Modelling dynamic hysteresis loops in steel sheets’, COMPEL – Int. J. Comput. Math. Electr. Electron. Eng., 2009, 28, (3), pp. 603612.
    5. 5)
      • 27. Takahashi, S., Kobayashi, S.: ‘Scaling power-law relations in asymmetrical minor hysteresis loops’, J. Appl. Phys., 2010, 107, (6), p. 063903.
    6. 6)
      • 8. Steinmetz, C.P.: ‘On the law of hysteresis’, Trans. Am. Inst. Electr. Eng., 1892, IX, (1), pp. 164.
    7. 7)
      • 20. Hussain, S., Mohammadi, M.H., Sidhu, K.S., et al: ‘Effects of PWM excitations on iron loss in electrical steels and machines’. IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, 2017, pp. 18.
    8. 8)
      • 24. Baghel, A.P.S., Chwastek, K., Kulkarni, S.V.: ‘Modelling of minor hysteresis loops in rolling and transverse directions of grain-oriented laminations’, IET Electr. Power Appl., 2015, 9, (4), pp. 344348.
    9. 9)
      • 2. Leite, J.V., Benabou, A., Sadowski, N.: ‘Accurate minor loops calculation with a modified Jiles- Atherton hysteresis model’, COMPEL – Int. J. Comput. Math. Electr. Electron. Eng., 2009, 28, (3), pp. 741749.
    10. 10)
      • 23. Fulginei, F.R., Salvini, A.: ‘Soft computing for the identification of the Jiles-Atherton model parameters’, IEEE Trans. Magn., 2005, 41, (3), pp. 11001108.
    11. 11)
      • 10. Li, J., Abdallah, T., Sullivan, C.R.: ‘Improved calculation of core loss with nonsinusoidal waveforms’. Conf. Record of the 2001 IEEE Industry Applications Conf. 36th IAS Annual Meeting, Chicago, IL, USA, 2001, vol. 4, pp. 22032210.
    12. 12)
      • 31. Dlala, E., Belahcen, A., Arkkio, A.: ‘A fast fixed-point method for solving magnetic field problems in media of hysteresis’, IEEE Trans. Magn., 2008, 44, (6), pp. 12141217.
    13. 13)
      • 6. Simão, C., Sadowski, N., Batistela, N.J., et al: ‘Analysis of magnetic hysteresis loops under sinusoidal and PWM voltage waveforms’. IEEE 36th Power Electronics Specialists Conf., Recife, Brazil, 2005, pp. 15551559.
    14. 14)
      • 26. Chwastek, K.: ‘Higher order reversal curves in some hysteresis models’, Arch. Electr. Eng., 2012, 61, (4), pp. 455470.
    15. 15)
      • 5. Lavers, J., Biringer, P., Hollitscher, H.: ‘A simple method of estimating the minor loop hysteresis loss in thin laminations’, IEEE Trans. Magn., 1978, 14, (5), pp. 386388.
    16. 16)
      • 11. Zirka, S.E., Moroz, Y.I., Harrison, R.G., et al: ‘On physical aspects of the Jiles-Atherton hysteresis models’, J. Appl. Phys., 2012, 112, (4), p. 043916.
    17. 17)
      • 13. Leite, J.V., Benabou, A., Kuo-Peng, P.: ‘Minor loops calculation with a modified Jiles-Atherton hysteresis model’, JMOA – J. Microw. Optoelectron. Electromagn. Appl., 2009, 8, (1), pp. 49S55S.
    18. 18)
      • 29. Baghel, A.P.S., Kulkarni, S.V.: ‘Parameter identification of the Jiles-Atherton hysteresis model using a hybrid technique’, IET Electr. Power Appl., 2012, 6, (9), pp. 689695.
    19. 19)
      • 14. Benabou, A., Clénet, S., Piriou, F.: ‘Comparison of Preisach and Jiles-Atherton models to take into account hysteresis phenomenon for finite element analysis’, J. Magn. Magn. Mater., 2003, 261, (1), pp. 139160.
    20. 20)
      • 18. Jiles, D.C.: ‘A self consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis’, IEEE Trans. Magn., 1992, 28, (5), pp. 26022604.
    21. 21)
      • 17. Carpenter, K.H.: ‘A differential equation approach to minor loops in the Jiles-Atherton hysteresis model’, IEEE Trans. Magn., 1991, 27, (6), pp. 44044406.
    22. 22)
      • 21. Jiles, D., Atherton, D.: ‘Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect’, J. Phys. D, Appl. Phys., 1984, 17, (6), p. 1265.
    23. 23)
      • 1. Benabou, A., Leite, J.V., Clénet, S., et al: ‘Minor loops modelling with a modified Jiles-Atherton model and comparison with the Preisach model’, J. Magn. Magn. Mater., 2008, 320, (20), pp. 10341038.
    24. 24)
      • 4. Li, Z., Yun, Y.: ‘Harmonic distortion feature of AC transformers caused by DC bias’. Asia-Pacific Power and Energy Engineering Conf., Shanghai, People's Republic of China, 2012, pp. 14.
    25. 25)
      • 9. Reinert, J., Brockmeyer, A., Doncker, R.W.A.A.D.: ‘Calculation of losses in Ferro- and Ferrimagnetic materials based on the modified Steinmetz equation’, IEEE Trans. Ind. Appl., 2001, 37, (4), pp. 10551061.
    26. 26)
      • 28. Ibrahim, M., Pillay, P.: ‘A hybrid model for improved hysteresis loss prediction in electrical machines’. IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 2013, pp. 43484355.
    27. 27)
      • 30. Kulkarni, S.V., Khaparde, S.A.: ‘Transformer engineering: design, technology, and diagnostics’ (CRC Press, Boca Raton, FL, USA, 2012, 2nd edn.), pp. 540544.
    28. 28)
      • 15. Hamimid, M., Mimoune, S.M., Feliachi, M., et al: ‘Non centered minor hysteresis loops evaluation based on exponential parameters transforms of the modified inverse Jiles-Atherton model’, Phys. B,Condens. Matter, 2014, 451, pp. 1619.
    29. 29)
      • 7. Takach, M.D., Lauritzen, P.O.: ‘Survey of magnetic core models’. Proc. of IEEE Applied Power Electronics Conf. and Exposition – APEC'95, Dallas, TX, USA, 1995, vol. 2, pp. 560566.
    30. 30)
      • 22. Sadowski, N., Batistela, N.J., Bastos, J.P.A., et al: ‘An inverse Jiles-Atherton model to take into account hysteresis in time-stepping finite-element calculations’, IEEE Trans. Magn., 2002, 38, (2I), pp. 797800.
    31. 31)
      • 16. Jiles, D.C., Atherton, D.L.: ‘Theory of ferromagnetic hysteresis’, J. Magn. Magn. Mater., 1986, 61, (1), pp. 4860.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0255
Loading

Related content

content/journals/10.1049/iet-epa.2019.0255
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading