access icon free Robust predictive current control for IPMSM without rotor flux information based on a discrete-time disturbance observer

This study proposes a novel robust predictive current control that is based on a discrete-time disturbance observer for an interior permanent magnet synchronous motor (IPMSM), does not require rotor flux information. To confirm the effects of the current control response on a parameter mismatch, the parameter sensitivity for the current prediction of a conventional deadbeat predictive current control (DPCC) is analysed. With the proposed method, disturbances owing to a parameter mismatch, rotor flux term, and unmodelled dynamics are estimated using a Luenberger observer in the discrete-time domain. The estimated disturbances are compensated with the predicted reference voltage model considering a digital delay. The stability of the proposed disturbance observer owing to a parameter mismatch of the stator resistance and d–q inductance is also analysed. The proposed method is robust against the stator resistance and an inductance variation, and an accurate predicted current control can be obtained without an offline or online estimation of the rotor flux. Compared with the conventional DPCC, the proposed method can eliminate a steady-state current and transient state error caused by disturbances of the system. Experimental results are presented to verify the proposed control scheme even with mismatched parameters of the IPMSM.

Inspec keywords: predictive control; discrete time systems; stators; sensorless machine control; rotors; synchronous motors; electric current control; torque control; permanent magnet motors; robust control; observers

Other keywords: current control response; steady-state current error; stator resistance; reference voltage model; transient state error; rotor flux information; parameter mismatch; d–q inductance; discrete-time disturbance observer; IPMSM; digital delay; control scheme; robust predictive current control; interior permanent magnet synchronous motor; deadbeat predictive current control; current prediction; inductance variation; stability; parameter sensitivity; Luenberger observer

Subjects: Optimal control; Synchronous machines; Stability in control theory; Simulation, modelling and identification; Control of electric power systems; Mechanical variables control; Discrete control systems; Current control

References

    1. 1)
      • 23. Huerta, J.M.E., Moreno, J.C., Fischer, J.R., et al: ‘A synchronous reference frame robust predictive current control for three-phase grid-connected inverters’, IEEE Trans. Ind. Electron., 2010, 57, (3), pp. 954962.
    2. 2)
      • 15. Lee, K.J., Park, B.G., Kim, R.Y., et al: ‘Robust predictive current controller based on a disturbance estimator in a three-phase grid-connected inverter’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 276283.
    3. 3)
      • 18. Siami, M., Khaburi, D. A., Rodríguez, J.: ‘Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 71607168.
    4. 4)
      • 12. Springob, L., Holtz, J.: ‘High-bandwidth current control for torque-ripple compensation in PM synchronous machines’, IEEE Trans. Ind. Electron., 1998, 45, (5), pp. 713721.
    5. 5)
      • 7. Rodríguez, J., Pontt, J., Silva, C.A., et al: ‘Predictive current control of a voltage source inverter’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 495503.
    6. 6)
      • 11. Wang, T., Liu, C., Lei, G., et al: ‘Model predictive direct torque control of permanent magnet synchronous motors with extended set of voltage space vectors’, IET Electr. Power Appl., 2017, 11, (8), pp. 13761382.
    7. 7)
      • 8. Vazquez, S., Rodriguez, J., Rivera, M., et al: ‘Model predictive control for power converters and drives: advances and trends’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 935947.
    8. 8)
      • 26. Kukrer, O.: ‘Discrete-time current control of voltage-fed three-phase PWM inverters’, IEEE Trans. Power Electron., 1996, 11, (2), pp. 260269.
    9. 9)
      • 10. Chen, Z., Qiu, J., Jin, M.: ‘Adaptive finite-control-set model predictive current control for IPMSM drives with inductance variation’, IET Electr. Power Appl., 2017, 11, (5), pp. 874884.
    10. 10)
      • 24. Pillay, P., Krishnan, R.: ‘Modeling of permanent magnet motor’, IEEE Trans. Ind. Electron., 1988, 35, (4), pp. 537541.
    11. 11)
      • 6. Shi, T., Xu, Y., Xiao, M., et al: ‘VSP predictive torque control of PMSM’, IET Electr. Power Appl., 2019, 13, (4), pp. 463471.
    12. 12)
      • 9. Chen, Y., Liu, T.H., Hsiao, C.F., et al: ‘Implementation of adaptive inverse controller for an interior permanent magnet synchronous motor adjustable speed drive system based on predictive current control’, IET Electr. Power Appl., 2015, 9, (1), pp. 6070.
    13. 13)
      • 5. Morel, F., Xuefang, L.S., Rétif, J.M., et al: ‘A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 27152728.
    14. 14)
      • 19. Kim, K.H., Youn, M.J.: ‘A simple and robust digital current control technique of a PM synchronous motor using time delay control approach’, IEEE Trans. Power Electron., 2001, 16, (1), pp. 7282.
    15. 15)
      • 14. Zhang, Y., Xie, W., Zhang, Y.: ‘Deadbeat direct power control of three-phase pulse-width modulation rectifiers’, IET Power Electron., 2014, 7, (6), pp. 13401346.
    16. 16)
      • 16. Wang, B., Chen, X., Yu, Y., et al: ‘Robust predictive current control with online disturbance estimation for induction machine drives’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 46634674.
    17. 17)
      • 4. Buja, G.S., Kazmierkowski, M.P.: ‘Direct torque control of PWM inverter-fed AC motors—A survey’, IEEE Trans. Ind. Electron., 2004, 51, (4), pp. 744757.
    18. 18)
      • 20. Kwak, S.S., Moon, U.C., Park, J.C.: ‘Predictive-control-based direct power control with an adaptive parameter identification technique for improved AFE performance’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 61786187.
    19. 19)
      • 2. Tiwari, A.N., Agarwal, P., Srivastava, S.P.: ‘Performance investigation of modified hysteresis current controller with the permanent magnet synchronous motor drive’, IET Electr. Power Appl., 2010, 4, (2), pp. 101108.
    20. 20)
      • 25. Chapra, S.C., Canale, R.P.: ‘Numerical methods for engineers’ (McGraw-Hill, McGraw-Hill Education, New York, NY, USA, 2015, 7th Edn.).
    21. 21)
      • 22. Liu, K., Zhu, Z.Q.: ‘Mechanical parameter estimation of permanent-magnet synchronous machines with aiding from estimation of rotor PM flux linkage’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 31153125.
    22. 22)
      • 13. Bouafia, A., Gaubert, J.P., Krim, F.: ‘Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM)’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 228236.
    23. 23)
      • 1. Dey, A., Azeez, N.A., Mathew, K., et al: ‘Hysteresis current controller for a general n-level inverter fed drive with online current error boundary computation and nearly constant switching frequency’, IET Power Electron., 2013, 6, (8), pp. 16401649.
    24. 24)
      • 17. Moreno, J.C., Huerta, J.M.E., Gil, R.G., et al: ‘A robust predictive current control for three-phase grid-connected inverters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 19932004.
    25. 25)
      • 21. Nalakath, S., Preindl, M., Emadi, A.: ‘Online multi-parameter estimation of interior permanent magnet motor drives with finite control set model predictive control’, IET Electr. Power Appl., 2017, 11, (5), pp. 944951.
    26. 26)
      • 3. Casadei, D., Profumo, F., Serra, G., et al: ‘FOC and DTC: two viable schemes for induction motors torque control’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 779787.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0252
Loading

Related content

content/journals/10.1049/iet-epa.2019.0252
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading