access icon free Review based on losses, torque ripple, vibration and noise in switched reluctance motor

Some key features to be satisfied by electric motors catering a wide range of applications are high specific power, lower manufacturing cost, rugged construction, and fault-tolerant operation. Switched reluctance motor is one such motor technology satisfying all the above requirements and is an emerging competitor to the induction and permanent magnet motors in domestic, industrial and electric vehicle applications. The present-day research on this motor is moving towards improving efficiency at lower speeds, power density, and the torque density. Certain challenges in achieving the same are (a) minimising the losses, (b) mitigation of torque ripple, noise, and vibration, and (c) material advancements. A review based on the estimation and mitigation techniques of each of these over the past three to four decades has been dealt with in this study. The salient features and results in each section provide a clear understanding of how each of these challenges can be overcome in the aspect of design and control strategies.

Inspec keywords: reluctance motors; permanent magnet motors; fault tolerance; torque; electric vehicles

Other keywords: rugged construction; permanent magnet motors; electric motors; torque ripple; motor technology; electric vehicle applications; induction magnet motors; domestic vehicle applications; switched reluctance motor; fault-tolerant operation; high specific power; power density; torque density; industrial vehicle applications

Subjects: Transportation; Synchronous machines

References

    1. 1)
      • 98. Helfried, P., Georgious, P., Manfred, M.: ‘Model predictive torque control of a switched reluctance motor’. IEEE Int. Conf. Industrial Technology, Gippsland, Australia, 2009, pp. 16.
    2. 2)
      • 5. Anekunu, A.Y., Chowdhury, S.P., Chowdhury, S.: ‘A review of research and development on switched reluctance motor for electric vehicles’. IEEE Power & Energy Society General Meeting, Vancouver, 2012, pp. 26102614.
    3. 3)
      • 53. Oh, J.H., Kwon, B.I.: ‘New rotor shape design of SRM to reduce the torque ripple and improve the output power’. Int. Conf. Electrical Machines and Systems, Nanjing, 2005, pp. 652654.
    4. 4)
      • 44. Nakane, H., Okada, Y., Kosaka, T., et al: ‘Experimental study on windage loss reduction using two types of rotor for hybrid excitation flux switching motor’. Int. Conf. Electrical Machines (ICEM), Lausanne, 2016, pp. 17071713.
    5. 5)
      • 122. Wu, C., Pollock, C.: ‘Analysis and reduction of vibration and acoustic noise in the switched reluctance drive’, IEEE Trans. Ind. Appl., 1995, 31, (1), pp. 9198.
    6. 6)
      • 23. Fernando, W.U.N., Barnes, M.: ‘Electromagnetic energy conversion efficiency enhancement of switched reluctance motors with zero-voltage loop current commutation’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 482492.
    7. 7)
      • 21. Mthombeni, T.L., Pillay, P.: ‘Lamination core losses in motors with nonsinusoidal excitation with particular reference to PWM and SRM excitation waveforms’, IEEE Trans. Energy Convers., 2005, 20, (4), pp. 836843.
    8. 8)
      • 48. Odhaci, Y., Kawase, Y., Miyrua, Y., et al: ‘Optimum design of switched reluctance motors using dynamic finite element analysis’, IEEE Trans. Magn., 2016, 52, (1), pp. 154162.
    9. 9)
      • 125. Makino, H., Kosaka, T., Matsui, N.: ‘Digital PWM-control-based active vibration cancellation for switched reluctance motors’, IEEE Trans. Ind. Appl., 2015, 51, (6), pp. 45214530.
    10. 10)
      • 62. Li, G., Ojeda, J., Hlioui, S., et al: ‘Modification in rotor pole geometry of mutually coupled switched reluctance machine for torque ripple mitigating’, IEEE Trans. Magn., 2012, 48, (6), pp. 20252034.
    11. 11)
      • 146. Li, J., Cho, Y.: ‘Investigation into reduction of vibration and acoustic noise in switched reluctance motors in radial force excitation and frame transfer function aspects’, IEEE Trans. Magn., 2009, 45, (10), pp. 46644667.
    12. 12)
      • 47. Neagoe, C., Foggia, A., Krishnan, R.: ‘Impact of pole tapering on the electromagnetic torque of the switched reluctance motor’. IEEE Int. Electric Machines and Drives Conf. Record, Milwaukee, WI, USA, 1997, pp. WA1/2.1WA1/2.3.
    13. 13)
      • 77. Rodrigues, M., Costa Branco, P.J., Suemitsu, W.: ‘Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors’, IEEE Trans. Ind. Electron., 2001, 48, (3), pp. 711715.
    14. 14)
      • 85. Jinupun, P., Chi-Kwang Luk, P.: ‘Direct torque control for sensor-less switched reluctance motor drives’. Power Electronics and Variable Speed Drives Conf., Seattle, USA, 1988, no. 456.
    15. 15)
      • 16. Elavarasan, R., Lenin, N.C.: ‘A review based on switched reluctance motor for EV and HEV applications with suitable converters’, J. Electr. Eng., 2018, 18, (4), pp. 323330.
    16. 16)
      • 63. Choi, Y.K., Yoon, H.S., Koh, C.S.: ‘Pole-shape optimization of a switched-reluctance motor for torque ripple reduction’, IEEE Trans. Magn., 2007, 43, (4), pp. 17971800.
    17. 17)
      • 40. Calverley, S.D., Jewel, G.W., Saunders, R.J.: ‘Aerodynamic losses in switched reluctance machines’, IEE Proc., Electr. Power Appl., 2002, 147, (6), pp. 443448.
    18. 18)
      • 72. Stankovic, A.M., Tadmor, G., Coric, Z.J.: ‘On torque ripple reduction in current-fed switched reluctance motors’, IEEE Trans. Ind. Electron., 1999, 46, (1), pp. 177183.
    19. 19)
      • 22. Wicislik, M., Suchenia, K.: ‘Core losses model of switched reluctance motor’. Selected Problems of Electrical Engineering and Electronics (WZEE), Kielce, 2015, pp. 16.
    20. 20)
      • 147. Castano, S.M., Bilgin, B., Fiarall, E., et al: ‘Acoustic noise analysis of a high-speed high-power switched reluctance machine: frame effects’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 6977.
    21. 21)
      • 132. Takiguchi, M., Sugimoto, H., Kurihara, N., et al: ‘Acoustic noise and vibration reduction of SRM by elimination of third harmonic component in sum of radial forces’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 883891.
    22. 22)
      • 117. Isfahani, A.H., Fahimi, B.: ‘Comparison of mechanical vibration between a double-stator switched reluctance machine and a conventional switched reluctance machine’, IEEE Trans. Magn., 2014, 50, (2), pp. 293296.
    23. 23)
      • 113. Zou, Y., Cheng, K.E., Cheung, N.C., et al: ‘Deformation and noise mitigation for the linear switched reluctance motor with skewed teeth structure’, IEEE Trans. Magn., 2014, 50, (11), pp. 14.
    24. 24)
      • 15. Cabezuelo, D., Andreu, J., Kortabarria, I.: ‘SRM converter topologies for EV application: state of the technology’. IEEE 26th Int. Symp. Industrial Electronics (ISIE), Edinburgh, 2017, pp. 861866.
    25. 25)
      • 36. Vrancik, J.E.: ‘Prediction of windage power loss in alternators’. NASA Technical Note D-4849, 1968.
    26. 26)
      • 1. Vijayakumar, K., Karthikeyan, R., Paramasivam, S., et al: ‘Switched reluctance motor modelling, design, simulation, and analysis: a comprehensive review’, IEEE Trans. Magn., 2008, 44, (12), pp. 46054617.
    27. 27)
      • 112. Yang, H., Lim, Y., Kim, H.: ‘Acoustic noise/vibration reduction of a single-phase SRM using skewed stator and rotor’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 42924300.
    28. 28)
      • 133. Kurihara, N., Bayless, J., Sugimoto, H., et al: ‘Noise reduction of switched reluctance motor with high number of Poles by novel simplified current waveform at low speed and low torque region’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 30133021.
    29. 29)
      • 6. Bostanci, E., Moallem, M., Parsapour, A., et al: ‘Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study’, IEEE Trans. Transp. Electrif., 2017, 3, (1), pp. 5875.
    30. 30)
      • 54. Desai, P.C., Krishnamurthy, M., Schofield, N., et al: ‘Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 649659.
    31. 31)
      • 31. Corda, J., Jamil, S.M.: ‘Experimental determination of equivalent-circuit parameters of a tubular switched reluctance machine with solid-steel magnetic core’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 304310.
    32. 32)
      • 130. Lecointe, J.P., Romary, R., Brudny, J.F., et al: ‘Analysis and active reduction of vibration and acoustic noise in the switched reluctance motor’, IEE Proc., Electr. Power Appl., 2004, 151, (6), pp. 725733.
    33. 33)
      • 101. Vijayaraghavan, P., Krishnan, R.: ‘Noise in electric machines: a review’, IEEE Trans. Ind. Appl., 1999, 35, (5), pp. 10071013.
    34. 34)
      • 128. Miniger, X., Galopin, N., Ojeda, X., et al: ‘Modelling of magnetoelastic and piezoelectric coupling: application to SRM noise damping’, IEEE Trans. Magn., 2009, 45, (3), pp. 12181221.
    35. 35)
      • 119. Liang, X., Li, G., Ojeda, J., et al: ‘Comparative study of classical and mutually coupled switched reluctance motors using multiphysics finite-element modelling’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 50665074.
    36. 36)
      • 129. Ahn, J.-W., Oh, S.-G., Moon, J.-W., et al: ‘A three-phase switched reluctance motor with two-phase excitation’, IEEE Trans. Ind. Appl., 1999, 35, (5), pp. 10671075.
    37. 37)
      • 139. Panda, D., Ramanarayanan, V.: ‘Reduced acoustic noise variable DC-bus-voltage-based sensorless switched reluctance motor drive for HVAC applications’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 20652078.
    38. 38)
      • 90. Gan, C., Wu, J., Sun, Q., et al: ‘Low-cost direct instantaneous torque control for switched reluctance motors with bus current detection under soft-chopping mode’, IET Power Electron., 2016, 9, (3), pp. 482490.
    39. 39)
      • 50. Choi, J.H., Kim, T.H., Jang, K.: ‘Geometric and electrical optimization design of SRM based on progressive quadratic response surface method’, IEEE Trans. Magn., 2003, 39, (5), pp. 32413243.
    40. 40)
      • 56. Hur, J., Kang, G.H., Lee, J.Y., et al: ‘Design and optimization of high torque, low ripple switched reluctance motor with flux barrier for direct drive’. IEEE Industry Applications Conf., 2004. 39th IAS Annual Meeting, Seattle, WA, USA, 2004, p. 407.
    41. 41)
      • 120. Li, J., Song, X., Cho, Y.: ‘Comparison of 12/8 and 6/4 switched reluctance motor: noise and vibration aspects’, IEEE Trans. Magn., 2008, 44, (11), pp. 41314134.
    42. 42)
      • 93. Deng, X., Mecrow, B., Wu, H., et al: ‘Design and development of low torque ripple variable-speed drive system with six-phase switched reluctance motors’, IEEE Trans. Energy Convers., 2018, 33, (1), pp. 420429.
    43. 43)
      • 60. Lee, J.W., Kim, H.S., Kwon, B.I., et al: ‘New rotor shape design for minimum torque ripple of SRM using FEM’, IEEE Trans. Magn., 2004, 40, (2), pp. 754757.
    44. 44)
      • 34. Bernard, L., Daniel, L.: ‘Effect of stress on magnetic hysteresis losses in a switched reluctance motor: application to stator and rotor shrink fitting’, IEEE Trans. Magn., 2015, 51, (9), pp. 113.
    45. 45)
      • 138. Callegaro, A.D., Bilgin, B., Emadi, A.: ‘Radial force shaping for acoustic noise reduction in switched reluctance machines’, IEEE Trans. Power Electron., 2019, 34, (10), pp. 98669878.
    46. 46)
      • 4. Gao, Y., McCulloch, M.D.: ‘A review of high power density switched reluctance machines suitable for automotive applications’. Proc. 10th Int. Conf. Electrical Machines, Marseille, 2012, pp. 26102614.
    47. 47)
      • 83. Mitra, R., Uddin, W., Sozer, Y., et al: ‘Torque ripple minimization of switched reluctance motors using speed signal based phase current profiling’. IEEE Energytech, Cleveland, OH, 2013, pp. 15.
    48. 48)
      • 59. Ding, W., Yin, Z., Liu, L., et al: ‘Magnetic circuit model and finite-element analysis of a modular switched reluctance machine with e-core stators and multi-layer common rotors’, IET Electr. Power Appl., 2014, 8, (8), pp. 296309.
    49. 49)
      • 45. Nakane, H., Okada, Y., Kosaka, T., et al: ‘Windage loss reduction for hybrid excitation flux switching motors based on rotor structure design’. IEEE Int. Electric Machines and Drives Conf. (IEMDC), Miami, FL, 2017, pp. 18.
    50. 50)
      • 35. Chiang, C.C., Knight, A.M., Hsieh, M.-F., et al: ‘Effects of annealing on magnetic properties of electrical steel and performances of SRM after punching’, IEEE Trans. Magn., 2014, 50, (11), pp. 114.
    51. 51)
      • 65. Swint, E., Krishnan, R.: ‘Two-phase SR drive with flux-reversal free stator and balanced normal forces’. IEEE Industrial Applications Society Annual Meeting, Edmonton, AB, 2008, pp. 16.
    52. 52)
      • 142. Cai, W., Pillay, P.: ‘Resonant frequencies and mode shapes of switched reluctance motors’, IEEE Trans. Energy Convers., 2001, 16, (1), pp. 4348.
    53. 53)
      • 81. Mademlis, C, Kioskeridis, I.: ‘Gain-scheduling regulator for high-performance position control of switched reluctance motor drives’, IEEE Trans. Ind. Electron., 2010, 59, (9), pp. 29222931.
    54. 54)
      • 18. Faiz, J., Sharifian, M.B.B.: ‘Core losses estimation in a multiple tooth per stator pole switched reluctance motor’, IEEE Trans. Ind. Appl., 1994, 30, (2), pp. 189195.
    55. 55)
      • 79. Lin, Z., Reay, D.S., Williams, B.W., et al: ‘Torque ripple reduction in switched reluctance motor drives using B-spline neural networks’, IEEE Trans. Ind. Appl., 2006, 42, (6), pp. 14451453.
    56. 56)
      • 42. Kiyota, K., Chiba, A.: ‘Design consideration of the offset of the cylindrical shape rotor switched reluctance motor for hybrid electric vehicles’. Int. Conf. Electrical Machines and Systems (ICEMS), Pattaya, 2015, pp. 914919.
    57. 57)
      • 143. Cai, W., Pillay, P., Tang, Z.: ‘Impact of stator windings and end-bells on resonant frequencies and mode shapes of switched reluctance motors’, IEEE Trans. Ind. Appl., 2002, 38, (4), pp. 10271036.
    58. 58)
      • 91. Zhao, X., Xu, X., Zhang, W.: ‘Research on DTC system with variable flux for switched reluctance motor’, CES Trans. Electr. Mach. Syst., 2017, 1, (2), pp. 199206.
    59. 59)
      • 10. Alecksey, A., Fernando, B., Igor, G., et al: ‘Self-sensing control of a switched reluctance drive using voltage pulse injection’. Int. Conf. Electrical Power Drive Systems, Novocherkassk, Russia, 2018, pp. 14.
    60. 60)
      • 61. Mousavi-Aghdam, S.R., Feyzi, M.R., Ebrahimi, Y.: ‘A new switched reluctance motor design to reduce torque ripple using finite element fuzzy optimization’, Iran. J. Electr. Eng., 2012, 8, (1), pp. 9196.
    61. 61)
      • 73. Sahoo, N.C., Xu, X., Panda, S.K.: ‘On torque ripple reduction in current-fed switched reluctance motors’, IEEE Trans. Energy Convers., 2001, 16, (4), pp. 318326.
    62. 62)
      • 144. Tang, Z., Pillay, P., Omekanda, A.M.: ‘Vibration prediction in switched reluctance motors with transfer function identification from shaker and force hammer tests’, IEEE Trans. Ind. Appl., 2003, 39, (4), pp. 978985.
    63. 63)
      • 12. Mahalakshmi, G., Ganesh, C.: ‘A review of torque ripple control strategies of switched reluctance motor’, Int. J. Appl. Eng. Res., 2018, 7, (13), pp. 46884692.
    64. 64)
      • 82. Cheng, H., Chen, H., Yang, Z.: ‘Average torque control of switched reluctance machine drives for electric vehicles’, IET Electr. Power Appl., 2015, 9, (7), pp. 459468.
    65. 65)
      • 43. Kiyota, K., Kakashima, T., Chiba, A., et al: ‘Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 154162.
    66. 66)
      • 57. Jahanmahin, M., Hajihosseinlu, E., Afjei, A., et al: ‘A novel multilayer 8 by 4 switch reluctance machine with ripple reduction’. Int. Symp. Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, 2012, pp. 536540.
    67. 67)
      • 55. Chishko, S.D., Tang, Y., Paulides, J.J.H., et al: ‘DC excited flux-switching motor: rotor structural optimization’. Int. Conf. Electrical Machines and Systems (ICEMS), Hangzhou, 2014, pp. 28672871.
    68. 68)
      • 64. Nabeta, S.I., Chabu, I.E., Lebensztajn, L., et al: ‘Mitigation of the torque ripple of a switched reluctance motor through a multiobjective optimization’, IEEE Trans. Magn., 2008, 44, (6), pp. 10181021.
    69. 69)
      • 66. Zhang, H., Wang, S.: ‘Topology optimization of rotor pole in switched reluctance motor for minimum torque ripple’, Electr. Power Compon. Syst., 2017, 45, (8), pp. 905911.
    70. 70)
      • 103. Tang, Z., Pillay, P., Chen, Y., et al: ‘Prediction of electromagnetic forces and vibrations in SRMs operating at steady-state and transient speeds’, IEEE Trans. Ind. Appl., 2005, 41, (4), pp. 927934.
    71. 71)
      • 111. Yasa, Y., Tekgun, D., Sozer, Y., et al: ‘Effect of distributed air gap in the stator for acoustic noise reduction in switched reluctance motors’. IEEE Applied Power Electronics Conf. and Exposition (APEC), Tampa, FL, 2017, pp. 633639.
    72. 72)
      • 20. Arkadan, A.A., Shehadeh, H.H., Brown, R.H., et al: ‘Effects of chopping on core losses and inductance profiles of SRM drives’, IEEE Trans. Magn., 1997, 33, (2), pp. 21052108.
    73. 73)
      • 27. Ganji, B., Faiz, J., Kasper, K., et al: ‘Core loss model based on finite-element method for switched reluctance motors’, IET Electr. Power Appl., 2010, 4, (7), pp. 569577.
    74. 74)
      • 110. Rasmussen, P.O., Andreasen, J.H., Pijanowski, J.M.: ‘Structural stator spacers-a solution for noise reduction of switched reluctance motors’, IEEE Trans. Ind. Appl., 2004, 40, (2), pp. 574581.
    75. 75)
      • 92. Ai-de, X., Xianchao, Z., Kunlun, H.: ‘Torque-ripple reduction of SRM using optimized voltage vector in DTC’, IET Electr. Sys. Transp., 2018, 8, (1), pp. 3543.
    76. 76)
      • 76. Henriques, L.O.A.P., Costa Branco, P.J., Rolim, L.G.B., et al: ‘Proposition of an offline learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation’, IEEE Trans. Ind. Electron., 2002, 49, (3), pp. 665676.
    77. 77)
      • 69. Hussain, I., Ehsani, M.: ‘Torque ripple minimization in switched reluctance motor drives by PWM current control’, IEEE Trans. Power Electron., 1996, 11, (1), pp. 8388.
    78. 78)
      • 95. Pushparajesh, V., Manigandan, T.: ‘Hybrid controller based instantaneous torque control of four phase switched reluctance motor’, Middle East J. Sci. Res., 2015, 23, (11), pp. 27362747.
    79. 79)
      • 9. Fahimi, B., Suresh, G., Eshani, M.: ‘Review of sensorless control methods in switched reluctance motor drives’. Conf. Record of the 2000 IEEE Industry Applications Conf. Thirty-Fifth IAS Annual Meeting and World Conf. Industrial Applications of Electrical Energy (Cat. No.00CH37129), Rome, Italy, 2000, pp. 18501857.
    80. 80)
      • 104. Neves, C.G.C., Carlson, R., Sasowski, N., et al: ‘Calculation of electromagnetic-mechanic-acoustic behavior of a switched reluctance motor’, IEEE Trans. Magn., 2000, 36, (4), pp. 13641367.
    81. 81)
      • 17. Materu, P.N., Krishnan, R.: ‘Estimation of switched reluctance motor losses’, IEEE Trans. Ind. Appl., 1992, 28, (3), pp. 668679.
    82. 82)
      • 145. Sun, J., Zhan, Q., Wang, S., et al: ‘A novel radiating rib structure in switched reluctance motors for low acoustic noise’, IEEE Trans. Magn., 2007, 43, (9), pp. 36303637.
    83. 83)
      • 67. Madhavan, R., Fernandes, B.G.: ‘Performance improvement in the axial flux-segmented rotor-switched reluctance motor’, IEEE Trans. Energy Convers., 2014, 29, (3), pp. 641651.
    84. 84)
      • 131. Chai, J.Y., Lin, Y.W., Liaw, C.M.: ‘Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor’, IEE Proc., Electr. Power Appl., 2006, 153, (3), pp. 348360.
    85. 85)
      • 106. Srinivas, K.N., Arumugam, R.: ‘Static and dynamic vibration analyses of switched reluctance motors including bearings, housing, rotor dynamics, and applied loads’, IEEE Trans. Magn., 2004, 40, (4), pp. 19111919.
    86. 86)
      • 51. Sheth, N.K., Rajagopal, K.R.: ‘Optimum pole arcs for a switched reluctance motor for higher torque with reduced ripple’, IEEE Trans. Magn., 2003, 39, (5), pp. 32143216.
    87. 87)
      • 136. Kurihara, N., Bayless, J., Chiba, A.: ‘Current waveform for noise reduction of a switched reluctance motor under magnetically saturated condition’, IEEE Trans. Ind. Appl., 2018, 54, (1), pp. 213222.
    88. 88)
      • 41. Kiyota, K., Kakashima, T., Chiba, A.: ‘Estimation and comparison of the windage loss of a 60 kW switched reluctance motor for hybrid electric vehicles’. Int. Power Electronics Conf. (IPEC-Hiroshima 2014 – ECCE ASIA), Hiroshima, 2014, pp. 35133518.
    89. 89)
      • 14. Ellabban, O., Abu-Rub, H.: ‘Switched reluctance motor converter topologies: a review’. IEEE Int. Conf. Industrial Technology (ICIT), Busan, 2014, pp. 840846.
    90. 90)
      • 94. Deng, X., Mecrow, B., Gadoue, H., et al: ‘A torque ripple minimization method for six-phase switched reluctance motor drives’. XXII Int. Conf. Electrical Machines (ICEM), Lausanne, 2016, pp. 955961.
    91. 91)
      • 49. Zaim, M.E., Dakhouche, K., Bounekhla, M.: ‘Design for torque ripple reduction of a three-phase switched-reluctance machine’, IEEE Trans. Magn., 2002, 38, (2), pp. 11891192.
    92. 92)
      • 108. Hung, J.-P., Ha, K.H., Lee, J.: ‘Stator pole and yoke design for vibration reduction of switched reluctance motor’, IEEE Trans. Magn., 2002, 38, (2), pp. 929932.
    93. 93)
      • 39. Srinivas, K.N., Arumugam, R.: ‘An investigation into the air velocity distribution inside switched reluctance motors’, Electr. Power Compon. Syst., 2004, 32, (9), pp. 893900.
    94. 94)
      • 37. Kunz, J., Cheng, S., Duan, Y., et al: ‘Design of a 750,000 rpm switched reluctance motor for micromachining’. IEEE Energy Conversion Congress and Exposition, Atlanta, GA, 2010, pp. 39863992.
    95. 95)
      • 140. Lin, C., Fahimi, B.: ‘Design considerations for reduction of acoustic noise in switched reluctance drives’. IEEE Energy Convers. Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 14081413.
    96. 96)
      • 84. Mikail, R., Husain, I., Islam, M.S., et al: ‘Four-quadrant torque ripple minimization of switched reluctance machine through current profiling with mitigation of rotor eccentricity problem and sensor errors’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 20972104.
    97. 97)
      • 7. Zabihi, N., Gouws, R.: ‘A review on switched reluctance machines for electric vehicles’. 25th IEEE. Int. Symp. Industrial Electronics (ISIE), Santa Clara, CA, 2016, pp. 799804.
    98. 98)
      • 124. Zhu, Z.Q., Liu, X., Pan, Z.: ‘Analytical model for predicting maximum reduction levels of vibration and noise in switched reluctance machine by active vibration cancellation’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 3645.
    99. 99)
      • 100. Cameron, D.E., Lang, J.H., Umans, S.D.: ‘The origin and reduction of acoustic noise in doubly salient variable-reluctance motors’, IEEE Trans. Ind. Appl., 1992, 28, (6), pp. 12501255.
    100. 100)
      • 88. Kim, J., Kim, R.: ‘Sensorless direct torque control using the inductance inflection point for a switched reluctance motor’, IEEE Trans. Ind. Electron., 2018, 5, (12), pp. 93369345.
    101. 101)
      • 96. Pushparajesh, V., Manigandan, T.: ‘Minimization of torque ripple in direct torque controlled switched reluctance drive using neural network’, Asian J. Res. Soc. Sci. Humanit., 2016, 6, (8), pp. 6580.
    102. 102)
      • 102. Anwar, M.N., Hussain, O.: ‘Radial force calculation and acoustic noise prediction in switched reluctance machines’, IEEE Trans. Ind. Appl., 2000, 36, (6), pp. 15891597.
    103. 103)
      • 46. Jonson, J.P., Rajarathnam, A.V., Toliyat, H.A., et al: ‘Torque optimisation for a SRM using winding function theory with a gap-dividing surface’. Conf. Record of the 1996 IEEE Ind. Appl. Conf. Thirty-First IAS Annual Meeting, San Diego, CA, USA, 1996, pp. 753760.
    104. 104)
      • 87. Inderka, R.B., De Doncker, R.W.: ‘DITC-direct instantaneous torque control of switched reluctance drives’. IEEE Industry Applications Conf. 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 2002, pp. 16051609.
    105. 105)
      • 58. Sugiura, M., Ishihara, Y., Ishikawa, H., et al: ‘Improvement of efficiency by stepped-skewing rotor for switched reluctance motors’. Int. Power Electronics Conf. (IPEC-Hiroshima 2014 – ECCE ASIA), Hiroshima, 2014, pp. 11351140.
    106. 106)
      • 89. Sahoo, S.K., Dasgupta, S., Panda, S.K., et al: ‘A Lyapunov function-based robust direct torque controller for a switched reluctance motor drive system’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 555564.
    107. 107)
      • 33. Sun, X., Shen, Y., Wang, S., et al: ‘Core losses analysis of a novel 16/10 segmented rotor switched reluctance BSG motor for HEVs using nonlinear lumped parameter equivalent circuit model’, IEEE/ASME Trans. Mechatronics, 2018, 23, (2), pp. 747757.
    108. 108)
      • 11. Jebarani Evangeline, S., Suresh Kumar, S.: ‘Torque ripple minimisation of switched reluctance drives – a survey’. 5th IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2010), Brighton, UK, 2010, pp. 16.
    109. 109)
      • 25. Oh, S., Krishnan, R.: ‘Two-phase SRM with flux-reversal-free stator: concept, analysis, design, and experimental verification’, IEEE Trans. Ind. Appl., 2007, 43, (28), pp. 12471257.
    110. 110)
      • 32. Perez Cebolla, F.J., Martinez-Iturbe, A., Martin-del-Brio, B., et al: ‘Nonlinear lumped-circuit model for switched reluctance motors exhibiting core losses’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 34333445.
    111. 111)
      • 24. Klein Hessling, A., Burkhart, B., De Doncker, R.W.: ‘Iron loss redistribution in switched reluctance machines using bidirectional phase currents’. 8th IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2016), Glasgow, 2016, pp. 16.
    112. 112)
      • 118. Dong, J., Jiang, J.W., Howey, B., et al: ‘Hybrid acoustic noise analysis approach of conventional and mutually coupled switched reluctance motors’, IEEE Trans. Energy Convers., 2017, 32, (3), pp. 10421051.
    113. 113)
      • 74. Stephenson, J.M., Hughes, A., Mann, R.: ‘Torque ripple minimization in a switched reluctance motor by optimum harmonic current injection’, IEE Proc. Electr. Power Appl., 2001, 148, (4), pp. 322328.
    114. 114)
      • 68. Ma, J., Qu, R., Li, J.: ‘Optimal design of axial flux switched reluctance motor for electric vehicle application’. Int. Conf. Electrical Machines and Systems (ICEMS), Hangzhou, 2014, pp. 18601865.
    115. 115)
      • 26. Xu, Z., Lee, D., Ahn, J.: ‘Design of a novel 6/5 segmental rotor type switched reluctance motor’. IEEE Industry Application Society Annual Meeting, Vancouver, BC, 2014, pp. 17.
    116. 116)
      • 2. Feyzi, M.R., Aghdam, S.R.M., Ebrahimi, Y.: ‘A comprehensive review on the performance improvement in switched reluctance motor design’. Proc. 24th Canadian Conf. Electrical and Computer Engineering, Niagara Falls, ON, 2011, pp. 0034800353.
    117. 117)
      • 109. Cai, W., Pillay, P., Tang, Z., et al: ‘Low-vibration design of switched reluctance motors for automotive applications using modal analysis’, IEEE Trans. Ind. Appl., 2003, 39, (4), pp. 971977.
    118. 118)
      • 126. Pollock, C., Wu, C.-Y.: ‘Acoustic noise cancellation techniques for switched reluctance drives’, IEEE Trans. Ind. Appl., 1997, 33, (2), pp. 477484.
    119. 119)
      • 135. Kurihara, N., Bayless, J., Chiba, A.: ‘Noise and vibration reduction of switched reluctance motor with novel simplified current waveform to reduce force sum variation’. IEEE Int. Electric Machines & Drives Conf. (IEMDC), Coeur d'Alene, ID, 2015, pp. 17941800.
    120. 120)
      • 80. Lin, Z., Reay, D.S., Williams, B.W., et al: ‘High-performance current control for switched reluctance motors based on on-line estimated parameters’, IET Electr. Power Appl., 2010, 4, (1), pp. 6774.
    121. 121)
      • 70. Kjaer, P.C., Gribble, J.J., Miller, T.J.E.: ‘High-grade control of switched reluctance motors’, IEEE Trans. Ind. Appl., 1997, 33, (6), pp. 15851597.
    122. 122)
      • 13. Shahgolain, G., Shahfi, A.R., Faiz, J.: ‘Torque ripple reduction in switched reluctance motors – a review’, Electromotion, 2015, 22, (5), pp. 3536.
    123. 123)
      • 52. Moallem, M., Ong, C., Unnewher, L.E.: ‘Effect of rotor profiles on the torque of a switched-reluctance motor’, IEEE Trans. Ind. Appl., 1992, 28, (2), pp. 364369.
    124. 124)
      • 86. Cheok, A.D., Fukuda, Y.: ‘A new torque and flux control method for switched reluctance motor drives’, IEEE Trans. Power Electron., 2002, 17, (4), pp. 543557.
    125. 125)
      • 3. Kamalakannan, C., Kamaraj, S., Paramasivam, S., et al: ‘Switched reluctance machine in automotive applications – a technology status review’. Proc. 1st Int. Conf. Electrical Energy Systems, Newport Beach, CA, 2011, pp. 187197.
    126. 126)
      • 123. Shin, S., Kawagoe, N., Kosaka, T., et al: ‘Study on commutation control method for reducing noise and vibration in SRM’, IEEE Trans. Ind. Appl., 2018, 54, (5), pp. 44154424.
    127. 127)
      • 137. Callegaro, A.D., Liang, J., Jiang, J.W., et al: ‘Radial force density analysis of switched reluctance machines: the source of acoustic noise’, IEEE Trans. Transp. Electrif., 2019, 5, (1), pp. 93106.
    128. 128)
      • 141. Guo, X., Zhong, R., Ding, D., et al: ‘Origin of resonance noise and analysis of randomising turn-on angle method in switched reluctance motor’, IET Electr. Power Appl., 2017, 11, (7), pp. 13241332.
    129. 129)
      • 30. Chindurza, I., Dorrell, D.G., Cossar, C.: ‘Assessing the core losses in switched reluctance machines’, IEEE Trans. Magn., 2005, 41, (10), pp. 39073909.
    130. 130)
      • 127. Miniger, X., Lefeuvre, E., Gabsi, M., et al: ‘Semiactive and active piezoelectric vibration controls for switched reluctance machine’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 7885.
    131. 131)
      • 134. Bayless, J., Kurihara, N., Sugimoto, H., et al: ‘Acoustic noise reduction of switched reluctance motor with reduced RMS current and enhanced efficiency’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 627636.
    132. 132)
      • 121. Long, S.A., Zhu, Z.Q., Howe, D.: ‘Effectiveness of active noise and vibration cancellation for switched reluctance machines operating under alternative control strategies’, IEEE Trans. Energy Convers., 2005, 20, (4), pp. 792801.
    133. 133)
      • 114. Gan, C., Wu, J., Shen, M., et al: ‘Investigation of skewing effects on the vibration reduction of three-phase switched reluctance motors’, IEEE Trans. Magn., 2015, 51, (9), pp. 19.
    134. 134)
      • 116. Elamin, M., Yusuf, Y., Omer, G., et al: ‘Acoustic noise mitigation of switched reluctance machines with windows in both stator and rotor Poles’. IEEE Applied Power Electronics Conf. and Exposition (APEC), San Antonio, TX, 2018, pp. 12051210.
    135. 135)
      • 78. Mademlis, C., Kioskeridis, I.: ‘Performance optimization in switched reluctance motor drives with online commutation angle control’, IEEE Trans. Energy Convers., 2003, 18, (3), pp. 448457.
    136. 136)
      • 75. Shaked, N.T., Rabinovici, R.: ‘New procedures for minimizing the torque ripple in switched reluctance motors by optimizing the phase-current profile’, IEEE Trans. Magn., 2005, 41, (3), pp. 11841192.
    137. 137)
      • 29. Rafajdus, P., Hrabovcova, V., Hudak, P.: ‘Investigation of losses and efficiency in switched reluctance motor’. 12th Int. Power Electronics and Motion Control Conf., Portoroz, 2006, pp. 296301.
    138. 138)
      • 38. Srinivas, K.N., Arumugam, R.: ‘Analysis and characterization of switched reluctance motors: part II. Flow, thermal, and vibration analyses’, IEEE Trans. Magn., 2005, 41, (4), pp. 13211332.
    139. 139)
      • 115. Rezazadeh, G., Ghasemian, M., Nasiri-Gheidhari, Z.: ‘Ultra low vibration and low acoustic noise multi-stage switched reluctance machine’. Annual Power Electronics, Drives Systems and Technologies Conf. (PEDSTC), Tehran, 2018, pp. 271276.
    140. 140)
      • 28. Pan, J.F., Meng, F.J., Cheung, N.C.: ‘Core loss analysis for the planar switched reluctance motor’, IEEE Trans. Magn., 2014, 50, (2), pp. 813816.
    141. 141)
      • 71. Bae, H.K., Krishnan, R.: ‘A novel approach to control of switched reluctance motors considering mutual inductance’. IEEE Int. Conf. Industrial Electronics, Control and Instrumentation. 21st Century Technologies, Nagoya, Japan, 2000, pp. 369374.
    142. 142)
      • 19. Hayashi, Y., Miller, T.J.E.: ‘A new approach to calculating core losses in the SRM’, IEEE Trans. Ind. Appl., 1995, 31, (5), pp. 10391046.
    143. 143)
      • 99. Cunhe, L., Guofeng, W., Yan, L., et al: ‘An improved finite state predictive torque control for switched reluctance motor drive’, IET Electr. Power Appl., 2016, 12, (1), pp. 144151.
    144. 144)
      • 105. Ha, K.H., Hong, J.P., Kim, G.-T., et al: ‘Orbital analysis of rotor due to electromagnetic force for switched reluctance motor’, IEEE Trans. Magn., 2000, 36, (4), pp. 14071411.
    145. 145)
      • 107. Besbes, M., Piscod, C., Camus, F., et al: ‘Influence of stator geometry upon vibratory behaviour and electromagnetic performances of switched reluctance motors’, IEE Proc., Electr. Power Appl., 1998, 145, (5), pp. 462468.
    146. 146)
      • 97. Pushparajesh, V., Manigandan, T.: ‘Torque ripple minimization of direct torque controlled switched reluctance motor using artificial intelligent controller’, World J. Model. Simul., 2016, 12, (3), pp. 163174.
    147. 147)
      • 8. Chiba, A., Kiyota, K.: ‘Review of research and development of switched reluctance motor for hybrid electrical vehicle’. IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Torino, 2015, pp. 127131.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0251
Loading

Related content

content/journals/10.1049/iet-epa.2019.0251
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading