Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Comparative evaluation on switched reluctance motor drive with different phase current sensing methods

Cost-effective phase current sensing is critical for the performance improvement of switched reluctance motor drive (SRD). In this study, a new two-sensor phase current sensing method is proposed and comparatively investigated with conventional m-sensor and one-sensor methods. First, the operation principles of the m-sensor, one-sensor, and proposed two-sensor methods are illustrated in detail on a four-phase SRD. Compared with the one-sensor method, the topology can be maintained without splitting the lower bus into freewheeling bus and excitation bus under the two-sensor method. Next, an advanced decoupling strategy is presented to obtain the complete phase current information and shorten the region of switch signals injection. With the simulation model in Matlab/Simulink environment, the steady and transient performance of SRD in the proposed method are not inferior to m-sensor and one-sensor methods. Meanwhile, the proposed two-sensor method is demonstrated to own superior thermal stress distribution by the finite-element model in ANSYS software. Eventually, the dynamic reliability is proved to be not enhanced as the number of current sensors decreases. Finally, an experimental setup with double-core TMS320F28377D is built to validate the proposed method and evaluation results.

References

    1. 1)
      • 16. Pradeep Kumar, V.V.S., Fernandes, B.G.: ‘A fault-tolerant single-phase grid-connected inverter topology with enhanced reliability for solar PV applications’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (3), pp. 12541262.
    2. 2)
      • 2. Ding, W., Hu, Y., Liu, Y.: ‘Performance evaluation of a fault-tolerant decoupled dual-channel switched reluctance motor drive under open-circuits’, IET Elect. Power Appl., 2014, 8, (4), pp. 117130.
    3. 3)
      • 7. Jung-Ik, H.: ‘Voltage injection method for three-phase current reconstruction in PWM inverters using a single sensor’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 767775.
    4. 4)
      • 9. Song, S., Xia, Z., Fang, G., et al: ‘Phase current reconstruction and control of 3-phase switched reluctance machine with modular power converter using single DC-link current sensor’, IEEE Trans. Power Electron., 2018, 33, (10), pp. 86378649.
    5. 5)
      • 1. Jeong, S.-G., Kwon, J.-M., Kwon, B.-H.: ‘High-efficiency bridgeless single-power-conversion battery charger for light electric vehicles’, IEEE Trans. Ind. Electron., 2019, 66, (1), pp. 215222.
    6. 6)
      • 10. Sun, Q., Wu, J., Gan, C., et al: ‘A new phase current reconstruction scheme for four-phase SRM drives using improved converter topology without voltage penalty’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 133144.
    7. 7)
      • 5. Kim, H., Falahi, M., Jahns, T.M., et al: ‘Inductor current measurement and regulation using a single DC link current sensor for interleaved DC–DC converters’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 15031510.
    8. 8)
      • 21. Kundu, U., Sensarma, P.: ‘Accurate estimation of diode reverse-recovery characteristics from datasheet specifications’, IEEE Trans. Power Electron., 2018, 33, (10), pp. 82208225.
    9. 9)
      • 6. Cho, Y., LaBella, T., Lai, J.-S.: ‘A three-phase current reconstruction strategy with online current offset compensation using a single current sensor’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 29242933.
    10. 10)
      • 3. Kjaer, P.C., Gallegos-Lopez, G.: ‘Single-sensor current regulation in switched reluctance motor drives’, IEEE Trans. Ind. Appl., 1998, 34, (3), pp. 444451.
    11. 11)
      • 12. Sun, Q., Wu, J., Gan, C., et al: ‘A multiplexed current sensors-based phase current detection scheme for multiphase SRMs’, IEEE Trans. Ind. Electron., 2019, 66, (9), pp. 68246835.
    12. 12)
      • 24. Barros, T.A.d.S., Neto, P.J.d.S., Filho, P.S.N., et al: ‘An approach for switched reluctance generator in a wind generation system with a wide range of operation speed’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 82778292.
    13. 13)
      • 4. Gan, C., Wu, J., Yang, S., et al: ‘Phase current reconstruction of switched reluctance motors from DC-link current under double high-frequency pulses injection’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 32653276.
    14. 14)
      • 13. Gan, C., Sun, Q., Jin, N., et al: ‘Cost-effective current measurement technique for four-phase SRM control by split dual bus line without pulse injection and voltage penalty’, IEEE Trans. Ind. Electron., 2018, 65, (6), pp. 45534564.
    15. 15)
      • 11. Han, G., Chen, H., Shi, X., et al: ‘Phase current reconstruction strategy for switched reluctance machines with fault-tolerant capability’, IET Elect. Power Appl., 2017, 11, (3), pp. 399411.
    16. 16)
      • 19. Ma, K., Bahman, A.S., Beczkowski, S., et al: ‘Complete loss and thermal model of power semiconductors including device rating information’, IEEE Trans. Power Electron., 2015, 30, (5), pp. 25562569.
    17. 17)
      • 14. Xu, S., Chen, H., Dong, F., et al: ‘Reliability analysis on power converter of switched reluctance machine system under different control strategies’, IEEE Trans. Ind. Electron., 2019, 66, (8), pp. 65706580.
    18. 18)
      • 8. Li, X., Dusmez, S., Akin, B., et al: ‘A new SVPWM for the phase current reconstruction of three-phase three-level T-type converters’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 26272637.
    19. 19)
      • 15. Khosroshahi, A., Abapour, M., Sabahi, M.: ‘Reliability evaluation of conventional and interleaved DC-DC boost converters’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 58215828.
    20. 20)
      • 17. Sakly, J., Bennani-Ben Abdelghani, A., Slama-Belkhodja, I., et al: ‘Reconfigurable DC/DC converter for efficiency and reliability optimization’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (3), pp. 12161224.
    21. 21)
      • 20. Chen, H., Yang, J., Xu, S.: ‘Electro-thermal based junction temperature estimation model for power converter of switched reluctance motor drive system’, IEEE Trans. Ind. Electron., 2019, p. 1, DOI 10.1109/TIE.2019.2898600, to appear.
    22. 22)
      • 22. Cai, J., Deng, Z.: ‘Unbalanced phase inductance adaptable rotor position sensorless scheme for switched reluctance motor’, IEEE Trans. Power Electron., 2018, 33, (5), pp. 42854292.
    23. 23)
      • 18. Song, S.J., Ge, L.F., Zhang, Z.H.: ‘Accurate position estimation of SRM based on optimal interval selection and linear regression analysis’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 34673478.
    24. 24)
      • 23. Tu, P., Yang, S., Peng, W.: ‘Reliability and cost based redundancy design for modular multilevel converter’, IEEE Trans. Ind. Electron., 2019, 66, (3), pp. 23332342.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0212
Loading

Related content

content/journals/10.1049/iet-epa.2019.0212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address