access icon free Improve the performance characteristics of the IPMSM under the effect of the varying loads

Studying the dynamic performance is very important for improving the performance of the electrical machines. The sudden applied or removal the load is very critical for the electrical machines. It may lead to some problems in it's as, mechanical stress, surge current, increase the losses and decrease the motor life time. So, this paper studied this problem and constructed proposal model to reduce the effect of this problem on the electrical machines. This occurred through comparing between the effect of the dynamic load, sudden applied and removal loads on the performance characteristics of interior permanent synchronous motor (IPMSM) with proposal model and with classical model in the constant flux region and in the field weakening region. The simulation is done through the MATLAB program. The simulation shows the effectiveness of the proposal model on the performance characteristics of the IPMSM. With proposal model, the overshooting and under shooting of the motor speed are reduced. Rise time and settling time are improved, the response of the motor torque for load variations is improved and the stator currents are decreased. In this model, the space vector pulse width modulation is used to controlling the inverter which used to drive the IPMSM.

Inspec keywords: shafts; synchronous motor drives; permanent magnet motors; machine control; stators; synchronous motors

Other keywords: motor life time; interior permanent synchronous motor; classical model; motor shaft; electrical machine; interior permanent magnet synchronous motor; load variations; dynamic load; varying loads; IPMSM; motor speed; proposal model; dynamic performance; performance characteristics; sudden removal load; motor torque; sudden applied load

Subjects: Control of electric power systems; Drives; Synchronous machines; Mechanical components

References

    1. 1)
      • 8. Noguchi, T.: ‘Trends of permanent-magnet synchronous machine drives’, Trans. Electr. Electron. Eng., 2007, 2, pp. 125142.
    2. 2)
      • 24. Hoang, K.D., Aorith, H.K.A.: ‘Control of IPMSM drives for traction applications considering machine parameter and inverter nonlinearities’, IEEE Trans. Transp. Electrification, 2015, 1, (4), pp. 312325.
    3. 3)
      • 23. Sumesh, M., Helen, S., Kavitha, M., et al: ‘Implementation of maximum torque per ampere algorithm in PMSM’, Int. J. Eng. Sci. Comput., 2016, 6, (3), pp. 25332538.
    4. 4)
      • 20. Singh, N.K., Tiwari, P.: ‘Enhancing stability & performance analysis of PMSM using SVPWM & PI controller’, Int. J. Sci. Eng. Technol. Res., 2016, 5, (5), pp. 14291433.
    5. 5)
      • 2. Xu, Y., Shi, T., Yan, Y., et al: ‘Dual-vector predictive torque control of permanent magnet synchronous motors based on a candidate vector table’, Energies, 2019, 12, (1), pp. 115.
    6. 6)
      • 3. Kar, N.C., Hamidifar, S., Kazerooni, M: ‘Analytical modelling and parametric sensitivity analysis for the PMSM steady-state performance prediction’, IET Electr. Power Appl., 2013, 7, (7), pp. 586596.
    7. 7)
      • 26. Songa, Q., Jiaa, C.: ‘Robust speed controller design for permanent magnet synchronous motor drives based on sliding mode control’, Energy Proc., 2016, 88, pp. 867873.
    8. 8)
      • 13. Espina, J., Arias, A., Balcells, J., et al: ‘Speed anti-windup PI strategies review for field oriented control of permanent magnet synchronous machines’. Compatibility and Power Electronics CPE-2009, IEEE Conf. Publications, Badajoz, Spain, 2009, pp. 279285.
    9. 9)
      • 11. Liu, T., Chen, G., Li, S.: ‘Application of vector control technology for PMSM used in electric vehicles paper’, Open Autom. Control Syst. J., 2014, 6, pp. 13341341.
    10. 10)
      • 1. Smith, T., Jones, M.: ‘Model predictive control of induction motor drives: torque control versus flux control’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 40504060.
    11. 11)
      • 10. Vishwakarma, P.K.: ‘Design and simulation vector control of permanent magnet synchronous motor’, Int. J. Sci. Res. & Dev., 2018, 6, (4), pp. 13271331.
    12. 12)
      • 17. Yang, S.M., Lin, K.W.: ‘Automatic control loop tuning for permanent-magnet AC servo motor drives’, IEEE Trans. Ind. Electron., 2016, 63, (3), pp. 14991506.
    13. 13)
      • 21. Bariša, T, Sumina, D, Kutija, M.: ‘Comparison of maximum torque per ampere and loss minimization control for the interior permanent magnet synchronous generator’, Int. Conf. on Electrical Drives and Power Electronics, Tatranska Lomnica, Slovakia, 2015, pp. 497502.
    14. 14)
      • 9. Pellegrino, G., Vagati, A., Guglielmi, P., et al: ‘Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 803811.
    15. 15)
      • 14. Zhang, J.S.: ‘Matlab-based permanent magnet synchronous motor vector control simulation’. Proc. of the 2010 3rd IEEE Int. Conf. on Computer Science and Information technology, Chengdu, People's Republic of China, July 2010, pp. 539542.
    16. 16)
      • 22. Wang, M.-S., Hsieh, M.-F., Syamsiana, I.N., et al: ‘Fuzzy maximum torque per ampere and maximum torque per voltage control of interior permanent magnet synchronous motor drive’, Sens. Mater., 2017, 29, (4), pp. 461472.
    17. 17)
      • 18. Liu, X., Gu, Z., Zhao, J.: ‘Torque ripple reduction of a novel modular arc-linear flux-switching permanent magnet motor with rotor step skewing’, Energies, 2016, 9, pp. 115.
    18. 18)
      • 15. Madhu, R.K., Mathew, A.: ‘Matlab/simulink model of field oriented control of pmsm drive using space vectors’, Int. J. Adv. Eng. Technol., 2013, 6, (3), pp. 13551364.
    19. 19)
      • 19. Kumar, P., Lakra, D., Makin, R.: ‘Modeling and simulation of field oriented control PMSM drive system using SVPWM technique’, Int. J. Eng. Trends Technol., 2016, 39, (4), pp. 184188.
    20. 20)
      • 5. Karunamoorthy, B., Dhivyaa, D.: ‘Design of PMSM and its application’, Int. J. Curr. Res., 2017, 9, (5), pp. 5104751050.
    21. 21)
      • 7. Soleimani, J., Vahedi, A., Mirimani, S.M.: ‘Inner permanent magnet synchronous machine optimization for HEV traction drive application in order to achieve maximum torque per ampere paper’, Iran. J. Electr. Electron. Eng., 2011, 7, (4), pp. 241248.
    22. 22)
      • 4. Younesi, A., Tohidi, S., Feyzi, M.R.: ‘Improved optimization process for nonlinear model predictive control of PMSM’, Iran. J. Electr. Electron. Eng., 2018, 14, (3), pp. 278288.
    23. 23)
      • 12. Konghirun, M., Xu, L.: ‘A dq-axis current control technique for fast transient response in vector controlled drive of permanent magnet synchronous motor’. The 4th Int. Power Electronics and Motion Control Conf. IPEMC-2004, IEEE Conf. Publications, Xi'an, People's Republic of China, 2004, pp. 13161320.
    24. 24)
      • 6. El-Refaie, M., Jahns, T. M.: ‘Comparison of synchronous PM machine types for wide constant-power speed range operation’. Conf. Rec. 14th IEEE IAS Annu. Meeting, Hong Kong, 2005, vol. 2, pp. 10151022.
    25. 25)
      • 25. Sun, T., Wang, J., Koc, M., et al: ‘Self-learning MTPA control of interior permanent-magnet synchronous machine drives based on virtual signal injection’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 30623070.
    26. 26)
      • 16. Morel, F., Lin-Shi, X.F., Retif, J.M.: ‘A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 27152728.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0195
Loading

Related content

content/journals/10.1049/iet-epa.2019.0195
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading