© The Institution of Engineering and Technology
Brushless doublyfed induction machine (BDFIM) has recently gained considerable research interests due to its promising features when incorporated as wind generator or variable speed drive. The BDFIM has two threephase stator windings with different polepair numbers and excitation frequencies. The performance of the machine is based on the magnetic crosscoupling of rotating fields produced by the stator windings through a special squirrel cage rotor. Contrary to the conventional induction machine (IM), the rotor slip and frequency are high throughout the operating speed range. Hence, the rotor core loss cannot be ignored in the steadystate analysis. Although the core loss components have much more study of BDFIM. In this study, analytical expressions are individually derived for a number of core loss components caused by the complicated nature than those of an IM, the precise calculation of these components is important especially on the efficiency each stator winding field. Then, the modified steadystate electric equivalent model is developed by considering the components. The experiments and finite element analysis based on a 3 kW prototype BDFIM verify the accuracy of the proposed model.
References


1)

1. McMahon, R.A., Roberts, P.C., Wang, X., et al: ‘Performance of BDFM as generator and motor’, IEE Proc., Electr. Power Appl., 2006, 153, (2), pp. 289–299.

2)

2. Han, P., Cheng, M., Ademi, S., et al: ‘Brushless doublyfed machines: opportunities and challenges’, CMP J. Mag., 2018, 4, (2), pp. 1–17.

3)

3. Zhang, F., Yu, S., Wang, Y., et al: ‘Design and performance comparisons of brushless doublyfed generators with different rotor structures’, IEEE Trans. Ind. Electron., 2019, 66, (1), pp. 631–640.

4)

4. Mosaddegh, H., Abootorabi Zarchi, H.: ‘Maximum torque per ampere control of brushless doubly fed induction generator using variable structure approach for wind turbine applications’, J. Electr. Syst. Signals, 2015, 3, (1), pp. 1–8.

5)

5. Roberts, P.C.: ‘A study of Brushless Doublyfed (induction) machines’. , University of Cambridge, 2005.

6)

6. Wang, X.: ‘Modeling and design of brushless doublyfed induction machines’. , Delft University of Technology, 2017.

7)

7. Ferreira, A.C., Williamson, S.: ‘Timestepping finite element analysis of brushless doublyfed machine taking core loss and saturation into account’, IEEE Trans. Ind. Appl., 1999, 35, (3), pp. 583–588.

8)

8. Ahmadian, M., Jandaghi, B., Oraee, H.: ‘Hysteresis loss in brushless doubly fed induction machines’, Renew. Energies Power Quality J., 2011, 1, (9), pp. 1–6.

9)

9. Gorginpour, H., Oraee, H., Abdi, E.: ‘Calculation of core and stray load losses in brushless doublyfed induction generators’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 3167–3177.

10)

10. Hashemnia, M.N., Tahami, F., Oyarbide, E.: ‘Investigation of core loss effect on steadystate characteristics of inverter fed brushless doublyfed machines’, IEEE Trans. Energy Convers., 2014, 29, (1), pp. 57–64.

11)

11. Basic, D., Zhu, J.G., Boardman, G.: ‘Modeling and steadystate performance analysis of a brushless doublyfed twin stator induction generator’. Proc. Int. Conf. Power Eng., Melbourne, VIC, Australia, September 2002, pp. 1–6.

12)

12. Wang, W., Kiani, M., Fahimi, B.: ‘Optimal design of doublyfed induction generators using field reconstruction method’, IEEE Trans. Magn., 2010, 46, (8), pp. 3453–3456.

13)

13. Cardenas, R., Pena, R., Alepuz, Z., et al: ‘Overview of control systems for the operation of DFIGs in wind energy applications’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 2776–2797.

14)

14. Gorginpour, H., Jandaghi, B., Oraee, H.: ‘A novel rotor configuration for brushless doublyfed induction generators’, IET Electr. Power Appl., 2013, 7, (2), pp. 106–115.

15)

15. Amiri, N., Madani, S.M., Lipo, T.A., et al: ‘An improved direct decoupled power control of doubly fed induction machine without rotor position sensor and with robustness to parameter variation’, IEEE Trans. Energy Convers., 2012, 27, (4), pp. 873–884.

16)

16. Strous, T.D., Wang, X., Polinder, H., et al: ‘Brushless doublyfed induction machines: magnetic field analysis’, IEEE Trans. Magn., 2016, 52, (11), pp. 1–10.

17)

17. McMahon, R.A., Wang, X., AbdiJalebi, E., et al: ‘The BDFM as a generator in wind turbines’. Proc. Int. Conf. Power Electronics and Motion Control, Portoroz, Slovenia, August 2006, pp. 1859–1865.

18)

18. Wallace, A.K., Spee, R., Alexander, G.C.: ‘The brushless doublyfed machine: its advantages, applications and design methods’. Proc. Int. Conf. Electrical Machines and Drives, Oxford, UK, September 1993, pp. 511–517.

19)

19. Sadeghi, R., Madani, S.M., Ataei, M.: ‘A new smooth synchronization of brushless doublyfed induction generator by applying a proposed machine model’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 371–380.

20)

20. Tohidi, S.: ‘Analysis and simplified modelling of brushless doublyfed induction machine in synchronous mode of operation’, IET Electr. Power Appl., 2016, 10, (2), pp. 110–116.

21)

21. Reinert, J., Brockmeyer, A., De Doncker, R.W.A.A.: ‘Calculation of losses in ferro and ferrimagnetic materials based on the modified Steinmetz equation’, IEEE Trans. Ind. Appl., 2001, 37, (4), pp. 1055–1061.

22)

22. Agamloh, E.B.: ‘An evaluation of induction machine stray load loss from collated test results’, IEEE Trans. Ind., 2010, 46, (6), pp. 2311–2318.

23)

23. Heller, B., Hamata, V.: ‘Harmonic field effects in induction machines’ (Elsevier Scientific Pub., Netherlands, 1977).

24)

24. Roberts, P.C., McMahon, R.A., Tavner, P.J., et al: ‘Equivalent circuit for the brushless doubly fed machine (BDFM) including parameter estimation and experimental verification’, IEE Proc., Electr. Power Appl., 2005, 152, (4), pp. 933–942.

25)

25. Tohidi, S., Zolghadri, M.R., Oraee, H., et al: ‘Performance of the brushless doublyfed machine under normal and fault conditions’, IET Electr. Power Appl., 2012, 6, (9), pp. 621–627.

26)

26. Williamson, S., Boger, M.: ‘Impact of interbar current on the performance of the brushless doublyfed motor’, IEEE Trans. Ind. Appl., 1999, 35, (2), pp. 453–460.

27)

27. Boldea, I., Nasar, S.A.: ‘The induction machine handbook’ (CRC Press, New York, NY, USA, 2010, 2nd edn.), pp. 119–141.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietepa.2019.0133
Related content
content/journals/10.1049/ietepa.2019.0133
pub_keyword,iet_inspecKeyword,pub_concept
6
6