access icon free Modelling of reduced electromechanical interaction system for aircraft applications

Rotational systems such as aircraft engine drivetrains are subject to vibrations that can damage shafts. Torsional vibrations in drivetrains can be excited by the connection of loads to the generator due to electromechanical interaction. This problem is particularly relevant in new aircraft because the drivetrain is flexible and the electrical power system (EPS) load is high. To extend the lifespan of the aircraft engine, the electromechanical interaction must be considered. Since real-time constants of the electrical and mechanical systems have very different magnitudes, the simulation time can be high. Furthermore, highly detailed models of the electrical system have unnecessary complexity for the study of electromechanical interactions. For these reasons, modelling using reduced order systems is fundamental. Past studies of electromechanical interaction in aircraft engines developed models that allow the analysis of the torsional vibration, but these are difficult to implement. In this study, a reduced order electromechanical interaction system for aircraft applications is proposed and validated using experimental results. The proposed system uses a reduced drivetrain, simplified EPS, and sensorless measurement of the vibrations. The excitation of torsional vibrations obtained is compared with past studies to prove that the reduced order system is valid for studying the electromechanical interactions.

Inspec keywords: damping; rotors; vibrations; shafts; vibration measurement; electromechanical effects; reduced order systems; torsion; aerospace engines; aircraft

Other keywords: reduced drivetrain; EPS; rotational systems; reduced order electromechanical interaction system; electrical power system load; aircraft engine drivetrains; vibration sensorless measurement; highly detailed models; mechanical systems; aircraft applications; torsional vibration

Subjects: Vibrations and shock waves (mechanical engineering); Aerospace industry; Mechanical components; Engines; Measurement

References

    1. 1)
      • 3. Feehally, T., Damian, I.E., Apsley, J.M.: ‘Analysis of electromechanical interaction in aircraft generator systems’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 43274336.
    2. 2)
      • 32. Nagorny, A.S.: ‘A simple and accurate method for the experimental performance evaluation of high speed sensorless brushless DC motors’. 2009 IEEE Int. Electric Machines and Drives Conf., Miami, FL, USA, 2009, pp. 916921.
    3. 3)
      • 1. Friswell, M.I., Penny, J.E.T., Garvey, S.D., et al: ‘Dynamics of rotating machines’ (Cambridge University Press, Cambridge, UK, 2010).
    4. 4)
      • 9. Erazo-Damian, I., Iacchetti, M.F., Apsley, J.M.: ‘Electromechanical interactions in a doubly fed induction generator drivetrain’, IET Electr. Power Appl., 2018, 12, (8), pp. 11921199.
    5. 5)
      • 10. Apsley, J.M., González-Villaseñor, A., Barnes, M., et al: ‘Propulsion drive models for full electric marine propulsion systems’, IEEE Trans. Ind. Appl., 2009, 45, (2), pp. 676684.
    6. 6)
      • 14. Bijami, E., Farsangi, M.M.: ‘Robust hierarchical damping controller for uncertain wide-area power systems’, IET Gener. Transm. Distrib., 2018, 12, (22), pp. 59585967.
    7. 7)
      • 16. Holdrege, J.H., Subler, W., Frasier, W.E.: ‘AC induction motor torsional vibration consideration – a case study’, IEEE Trans. Ind. Appl., 1983, IA-19, (1), pp. 6873.
    8. 8)
      • 27. Darba, A., D'haese, P., De Belie, F., et al: ‘Improving the dynamic stiffness in a self-sensing BLDC machine drive using estimated load torque feedforward’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 31013114.
    9. 9)
      • 24. Yang, T., Bozhko, S., Asher, G.: ‘Functional modeling of symmetrical multipulse autotransformer rectifier units for aerospace applications’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 47044713.
    10. 10)
      • 36. Smith, C.B., Wereley, N.M.: ‘Transient analysis for damping identification in rotating composite beams with integral damping layers’, Smart Mater. Struct., 1996, 5, (5), pp. 540550.
    11. 11)
      • 4. Ying, J., Yuan, X., Hu, J., et al: ‘Impact of inertia control of DFIG-based WT on electromechanical oscillation damping of SG’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 34503459.
    12. 12)
      • 8. Kavil Kambrath, J., Wang, Y., Yoon, Y.-J., et al: ‘Modeling and control of marine diesel generator system with active protection’, IEEE Trans. Transp. Electrification, 2018, 4, (1), pp. 249271.
    13. 13)
      • 28. Gao, F., Bozhko, S., Costabeber, A., et al: ‘Control design and voltage stability analysis of a droop-controlled electrical power system for more electric aircraft’, IEEE Trans. Ind. Electron., 2017, 64, (12), pp. 92719281.
    14. 14)
      • 35. Lu, W., Du, X., Ding, J., et al: ‘Modal parameter identification based on fast Fourier transform and Hilbert Huang transform’. 2012 Second Int. Conf. Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 2012, pp. 27032706.
    15. 15)
      • 6. Ahumada, S.C., Garvey, S., Yang, T., et al: ‘Electric load impact over shaft connecting the engine and generator in more electric aircraft (MEA)’. SAE Technical Papers, in press, 2015.
    16. 16)
      • 17. Joyce, J.S., Kulig, T., Lambrecht, D.: ‘Torsional fatigue of turbine-generator shafts caused by different electrical system faults and switching operations’, IEEE Trans. Power Apparatus and Syst., 1978, PAS-97, pp. 19651977.
    17. 17)
      • 25. Chen, J.J., Wang, C., Chen, J.J.: ‘Investigation on the selection of electric power system architecture for future more electric aircraft’, IEEE Trans. Transp. Electrification, 2018, PP, (99), p. 1.
    18. 18)
      • 20. IEEE: ‘Proposed terms and definitions for subsynchronous oscillations’, IEEE Trans. Power Appar. Syst., 1980, PAS-99, (2), pp. 506511.
    19. 19)
      • 31. Liang, D., Li, J., Qu, R.: ‘Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 36723682.
    20. 20)
      • 11. Tripathi, A., Narayanan, G.: ‘Analytical evaluation and reduction of torque harmonics in induction motor drives operated at low pulse numbers’, IEEE Trans. Ind. Electron., 2018, 66, (2), pp. 967976.
    21. 21)
      • 34. Ahumada, C., Garvey, S., Yang, T., et al: ‘Electromechanical interaction analysis through sensorless torque measurement’. 2017 IEEE Southern Power Electronics Conf. (SPEC), Puerto Varas, Chile, 2017, pp. 16.
    22. 22)
      • 19. Sheppard, D.J.: ‘Torsional vibration resulting from adjustable-frequency AC drives’, IEEE Trans. Ind. Appl., 1988, 24, (5), pp. 812817.
    23. 23)
      • 15. Du, W., Bi, J., Wang, H.: ‘Damping degradation of power system low-frequency electromechanical oscillations caused by open-loop modal resonance’, IEEE Trans. Power Syst., 2018, 33, (5), pp. 50725081.
    24. 24)
      • 26. Feehally, T., Apsley, J.M.: ‘The doubly fed induction machine as an aero generator’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 34623471.
    25. 25)
      • 12. Ahumada, S.C.C., Garvey, S., Yang, T., et al: ‘The importance of load pulse timing in aircraft generation’. 18th Int. Conf. on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 2015, pp. 13391345.
    26. 26)
      • 33. Darba, A., D'haese, P., De Belie, F., et al: ‘Rotor speed, position and load torque estimation using back-EMF sampling for self-sensing brushless DC machine drives’. 2014 IEEE Fifth Int. Symp. Sensorless Control for Electrical Drives, Hiroshima, Japan, 2014, pp. 17.
    27. 27)
      • 22. Schmidt, P., Rehm, T.: ‘Notch filter tuning for resonant frequency reduction in dual inertia systems’. Conf. Record of the 1999 IEEE Industry Applications Conf. 34th IAS Annual Meeting (Cat. No. 99CH36370), Phoenix, AZ, USA, 1999, pp. 17301734.
    28. 28)
      • 18. Valenzuela, M.A., Bentley, J.M., Lorenz, R.D.: ‘Evaluation of torsional oscillations in paper machine sections’, IEEE Trans. Ind. Appl., 2005, 41, (2), pp. 1522.
    29. 29)
      • 5. Fateh, F., White, W.N., Gruenbacher, D.: ‘Torsional vibrations mitigation in the drivetrain of DFIG-based grid-connected wind turbine’, IEEE Trans. Ind. Appl., 2017, 53, (6), pp. 57605767.
    30. 30)
      • 21. Ran, L., Xiang, D., Kirtley, J.L., et al: ‘Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 14981506.
    31. 31)
      • 29. Kumar, D., Radcliffe, P.: ‘Sensorless speed measurement for brushed DC motors’, IET Power Electron., 2015, 8, (11), pp. 22232228.
    32. 32)
      • 7. Wheeler, P.W., Clare, J.C., Trentin, A., et al: ‘An overview of the more electrical aircraft’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2013, 227, (4), pp. 578585.
    33. 33)
      • 30. Li, H., Zheng, S., Ren, H.: ‘Self-correction of commutation point for high-speed sensorless BLDC motor with low inductance and nonideal back EMF’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 642651.
    34. 34)
      • 13. Walker, D.N., Adams, S.L., Placek, R.J., et al: ‘Torsional vibration and fatigue of turbine-generator shafts’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (11), pp. 43734380.
    35. 35)
      • 23. Moore, G.: ‘Electro-mechanical interactions in aerospace gas turbines’ (University of Nottingham, Nottingham, UK, 2012).
    36. 36)
      • 2. Walker, D.N., Bowler, C.E.J.J., Jackson, R.L., et al: ‘Results of subsynchronous resonance test at Mohave’, IEEE Trans. Power Appar. Syst., 1975, 94, (5), pp. 18781889.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0122
Loading

Related content

content/journals/10.1049/iet-epa.2019.0122
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading