Modelling of reduced electromechanical interaction system for aircraft applications

Modelling of reduced electromechanical interaction system for aircraft applications

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Rotational systems such as aircraft engine drivetrains are subject to vibrations that can damage shafts. Torsional vibrations in drivetrains can be excited by the connection of loads to the generator due to electromechanical interaction. This problem is particularly relevant in new aircraft because the drivetrain is flexible and the electrical power system (EPS) load is high. To extend the lifespan of the aircraft engine, the electromechanical interaction must be considered. Since real-time constants of the electrical and mechanical systems have very different magnitudes, the simulation time can be high. Furthermore, highly detailed models of the electrical system have unnecessary complexity for the study of electromechanical interactions. For these reasons, modelling using reduced order systems is fundamental. Past studies of electromechanical interaction in aircraft engines developed models that allow the analysis of the torsional vibration, but these are difficult to implement. In this study, a reduced order electromechanical interaction system for aircraft applications is proposed and validated using experimental results. The proposed system uses a reduced drivetrain, simplified EPS, and sensorless measurement of the vibrations. The excitation of torsional vibrations obtained is compared with past studies to prove that the reduced order system is valid for studying the electromechanical interactions.


    1. 1)
      • 1. Friswell, M.I., Penny, J.E.T., Garvey, S.D., et al: ‘Dynamics of rotating machines’ (Cambridge University Press, Cambridge, UK, 2010).
    2. 2)
      • 2. Walker, D.N., Bowler, C.E.J.J., Jackson, R.L., et al: ‘Results of subsynchronous resonance test at Mohave’, IEEE Trans. Power Appar. Syst., 1975, 94, (5), pp. 18781889.
    3. 3)
      • 3. Feehally, T., Damian, I.E., Apsley, J.M.: ‘Analysis of electromechanical interaction in aircraft generator systems’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 43274336.
    4. 4)
      • 4. Ying, J., Yuan, X., Hu, J., et al: ‘Impact of inertia control of DFIG-based WT on electromechanical oscillation damping of SG’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 34503459.
    5. 5)
      • 5. Fateh, F., White, W.N., Gruenbacher, D.: ‘Torsional vibrations mitigation in the drivetrain of DFIG-based grid-connected wind turbine’, IEEE Trans. Ind. Appl., 2017, 53, (6), pp. 57605767.
    6. 6)
      • 6. Ahumada, S.C., Garvey, S., Yang, T., et al: ‘Electric load impact over shaft connecting the engine and generator in more electric aircraft (MEA)’. SAE Technical Papers, in press, 2015.
    7. 7)
      • 7. Wheeler, P.W., Clare, J.C., Trentin, A., et al: ‘An overview of the more electrical aircraft’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2013, 227, (4), pp. 578585.
    8. 8)
      • 8. Kavil Kambrath, J., Wang, Y., Yoon, Y.-J., et al: ‘Modeling and control of marine diesel generator system with active protection’, IEEE Trans. Transp. Electrification, 2018, 4, (1), pp. 249271.
    9. 9)
      • 9. Erazo-Damian, I., Iacchetti, M.F., Apsley, J.M.: ‘Electromechanical interactions in a doubly fed induction generator drivetrain’, IET Electr. Power Appl., 2018, 12, (8), pp. 11921199.
    10. 10)
      • 10. Apsley, J.M., González-Villaseñor, A., Barnes, M., et al: ‘Propulsion drive models for full electric marine propulsion systems’, IEEE Trans. Ind. Appl., 2009, 45, (2), pp. 676684.
    11. 11)
      • 11. Tripathi, A., Narayanan, G.: ‘Analytical evaluation and reduction of torque harmonics in induction motor drives operated at low pulse numbers’, IEEE Trans. Ind. Electron., 2018, 66, (2), pp. 967976.
    12. 12)
      • 12. Ahumada, S.C.C., Garvey, S., Yang, T., et al: ‘The importance of load pulse timing in aircraft generation’. 18th Int. Conf. on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 2015, pp. 13391345.
    13. 13)
      • 13. Walker, D.N., Adams, S.L., Placek, R.J., et al: ‘Torsional vibration and fatigue of turbine-generator shafts’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (11), pp. 43734380.
    14. 14)
      • 14. Bijami, E., Farsangi, M.M.: ‘Robust hierarchical damping controller for uncertain wide-area power systems’, IET Gener. Transm. Distrib., 2018, 12, (22), pp. 59585967.
    15. 15)
      • 15. Du, W., Bi, J., Wang, H.: ‘Damping degradation of power system low-frequency electromechanical oscillations caused by open-loop modal resonance’, IEEE Trans. Power Syst., 2018, 33, (5), pp. 50725081.
    16. 16)
      • 16. Holdrege, J.H., Subler, W., Frasier, W.E.: ‘AC induction motor torsional vibration consideration – a case study’, IEEE Trans. Ind. Appl., 1983, IA-19, (1), pp. 6873.
    17. 17)
      • 17. Joyce, J.S., Kulig, T., Lambrecht, D.: ‘Torsional fatigue of turbine-generator shafts caused by different electrical system faults and switching operations’, IEEE Trans. Power Apparatus and Syst., 1978, PAS-97, pp. 19651977.
    18. 18)
      • 18. Valenzuela, M.A., Bentley, J.M., Lorenz, R.D.: ‘Evaluation of torsional oscillations in paper machine sections’, IEEE Trans. Ind. Appl., 2005, 41, (2), pp. 1522.
    19. 19)
      • 19. Sheppard, D.J.: ‘Torsional vibration resulting from adjustable-frequency AC drives’, IEEE Trans. Ind. Appl., 1988, 24, (5), pp. 812817.
    20. 20)
      • 20. IEEE: ‘Proposed terms and definitions for subsynchronous oscillations’, IEEE Trans. Power Appar. Syst., 1980, PAS-99, (2), pp. 506511.
    21. 21)
      • 21. Ran, L., Xiang, D., Kirtley, J.L., et al: ‘Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 14981506.
    22. 22)
      • 22. Schmidt, P., Rehm, T.: ‘Notch filter tuning for resonant frequency reduction in dual inertia systems’. Conf. Record of the 1999 IEEE Industry Applications Conf. 34th IAS Annual Meeting (Cat. No. 99CH36370), Phoenix, AZ, USA, 1999, pp. 17301734.
    23. 23)
      • 23. Moore, G.: ‘Electro-mechanical interactions in aerospace gas turbines’ (University of Nottingham, Nottingham, UK, 2012).
    24. 24)
      • 24. Yang, T., Bozhko, S., Asher, G.: ‘Functional modeling of symmetrical multipulse autotransformer rectifier units for aerospace applications’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 47044713.
    25. 25)
      • 25. Chen, J.J., Wang, C., Chen, J.J.: ‘Investigation on the selection of electric power system architecture for future more electric aircraft’, IEEE Trans. Transp. Electrification, 2018, PP, (99), p. 1.
    26. 26)
      • 26. Feehally, T., Apsley, J.M.: ‘The doubly fed induction machine as an aero generator’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 34623471.
    27. 27)
      • 27. Darba, A., D'haese, P., De Belie, F., et al: ‘Improving the dynamic stiffness in a self-sensing BLDC machine drive using estimated load torque feedforward’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 31013114.
    28. 28)
      • 28. Gao, F., Bozhko, S., Costabeber, A., et al: ‘Control design and voltage stability analysis of a droop-controlled electrical power system for more electric aircraft’, IEEE Trans. Ind. Electron., 2017, 64, (12), pp. 92719281.
    29. 29)
      • 29. Kumar, D., Radcliffe, P.: ‘Sensorless speed measurement for brushed DC motors’, IET Power Electron., 2015, 8, (11), pp. 22232228.
    30. 30)
      • 30. Li, H., Zheng, S., Ren, H.: ‘Self-correction of commutation point for high-speed sensorless BLDC motor with low inductance and nonideal back EMF’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 642651.
    31. 31)
      • 31. Liang, D., Li, J., Qu, R.: ‘Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 36723682.
    32. 32)
      • 32. Nagorny, A.S.: ‘A simple and accurate method for the experimental performance evaluation of high speed sensorless brushless DC motors’. 2009 IEEE Int. Electric Machines and Drives Conf., Miami, FL, USA, 2009, pp. 916921.
    33. 33)
      • 33. Darba, A., D'haese, P., De Belie, F., et al: ‘Rotor speed, position and load torque estimation using back-EMF sampling for self-sensing brushless DC machine drives’. 2014 IEEE Fifth Int. Symp. Sensorless Control for Electrical Drives, Hiroshima, Japan, 2014, pp. 17.
    34. 34)
      • 34. Ahumada, C., Garvey, S., Yang, T., et al: ‘Electromechanical interaction analysis through sensorless torque measurement’. 2017 IEEE Southern Power Electronics Conf. (SPEC), Puerto Varas, Chile, 2017, pp. 16.
    35. 35)
      • 35. Lu, W., Du, X., Ding, J., et al: ‘Modal parameter identification based on fast Fourier transform and Hilbert Huang transform’. 2012 Second Int. Conf. Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 2012, pp. 27032706.
    36. 36)
      • 36. Smith, C.B., Wereley, N.M.: ‘Transient analysis for damping identification in rotating composite beams with integral damping layers’, Smart Mater. Struct., 1996, 5, (5), pp. 540550.

Related content

This is a required field
Please enter a valid email address