access icon free Sound-quality diagnosis method of permanent magnet synchronous motor for electric vehicles based on critical band analysis

As it has been widely and wrongly believed that noises at any frequency of permanent magnet synchronous motor (PMSM) are positively correlated with subjective annoyance, reducing sound pressure level or sound power level of PMSM is mostly regarded as the only optimisation goal of sound quality (SQ). This study presents a sensitive critical band (SCB) diagnostic method for SQ of PMSM for electric vehicles (EV). First, a new acquisition method of near-field noises without sound attenuation of PMSM was proposed and a neural network model for SQ evaluation was established to determine the specific operating condition with the worst SQ. Second, the band-pass filter of CB (BPFCB) and band-stop filter of CB (BSFCB) were designed to diagnose positive SCBs or negative SCBs in which noises were positively or negatively correlated with the subjective annoyance, respectively. Finally, the major excitation sources of abnormal noises in SCBs were diagnosed by using the analytical calculation. An 8-pole-48-slot PMSM was considered as a case study to testify to the effectiveness and practicability of the proposed method. It may provide a new route for the precise SQ optimisation of PMSM.

Inspec keywords: band-stop filters; synchronous motors; band-pass filters; power engineering computing; electric vehicles; permanent magnet motors; neural nets; optimisation

Other keywords: sound power level reduction; BSFCB; EV; sound-quality diagnosis method; BPFCB; sound pressure level reduction; electric vehicles; PMSM; band-pass filter; near-field noise acquisition method; SQ optimisation evaluation; band-stop filter; critical band analysis; sound attenuation; sensitive critical band diagnostic method; positive SCB diagnostic method; neural network model; 8-pole-48-slot PMSM; sound quality; negative SCB diagnostic method; permanent magnet synchronous motor

Subjects: Transportation; Optimisation techniques; Power engineering computing; Optimisation techniques; Neural computing techniques; Synchronous machines

References

    1. 1)
      • 22. Zhang, R., Lan, Y., Huang, G.B.: ‘Universal approximation of extreme learning machine with adaptive growth of hidden nodes’, IEEE Trans. Neural Netw. Lear. Syst., 2012, 23, (2), pp. 365371.
    2. 2)
      • 13. Lin, F., Zuo, S.G., Deng, W.Z., et al: ‘Modeling and analysis of electromagnetic force, vibration, and noise in permanent-magnet synchronous motor considering current harmonics’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 74557466.
    3. 3)
      • 2. Singh, S., Rayne, S.R., Mackrill, J.B., et al: ‘Do experiments in the virtual world effectively predict how pedestrians evaluate electric vehicle sounds in the real world’, Transp. Res. F Psychol. Behav., 2015, 35, pp. 119131.
    4. 4)
      • 24. Maraaba, L., Al-Hamouz, Z., Abido, M.: ‘An efficient stator inter-turn fault diagnosis tool for induction motors’, Energies, 2018, 11, (3), pp. 653670.
    5. 5)
      • 9. Torregrossa, D., Fahimi, B., Peyraut, F., et al: ‘Fast computation of electromagnetic vibrations in electrical machines via field reconstruction method and knowledge of mechanical impulse response’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 839847.
    6. 6)
      • 18. Hugo, F., Eberhard, Z.: ‘Psychoacoustics facts and models’ (Springer-Verlag Berlin Heidelberg Press, New York, USA, 2007), pp. 23264.
    7. 7)
      • 6. Ma, C.G., Li, Q., Liu, Q.H., et al: ‘Sound quality evaluation of noise of hub permanent-magnet synchronous motors for electric vehicles’, IEEE Trans. Ind. Electron., 2016, 63, (9), pp. 56635673.
    8. 8)
      • 30. Zhu, Z.Q., Howe, D., Chan, C.C.: ‘Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines’, IEEE Trans. Magn., 2002, 38, (1), pp. 229238.
    9. 9)
      • 16. Kiyota, K., Kakishima, T., Chiba, A., et al: ‘Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 154162.
    10. 10)
      • 7. Ma, C.G., Zuo, S.G.: ‘Black-box method of identification and diagnosis of abnormal noise sources of permanent magnet synchronous machines for electric vehicles’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 55385549.
    11. 11)
      • 5. Mosquera-Sánchez, J.A., Sarrazin, M., Janssens, K., et al: ‘Multiple target sound quality balance for hybrid electric powertrain noise’, Mech. Syst. Signal Pr., 2018, 99, pp. 478503.
    12. 12)
      • 10. Torregrossa, D., Khoobroo, A., Fahimi, B.: ‘Prediction of acoustic noise and torque pulsation in PM synchronous machines with static eccentricity and partial demagnetization using field reconstruction method’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 934944.
    13. 13)
      • 27. Datar, A., Jain, A., Sharma, P.C.: ‘Design of Kaiser window based optimized prototype filter for cosine modulated filter banks’, Signal Process., 2010, 90, (5), pp. 17421749.
    14. 14)
      • 20. Lee, S.K.: ‘Objective evaluation of interior sound quality in passenger cars during acceleration’, J. Sound Vibr., 2008, 310, (1–2), pp. 149168.
    15. 15)
      • 12. Verez, G., Barakat, G., Amara, Y., et al: ‘Impact of pole and slot combination on vibrations and noise of electromagnetic origins in permanent magnet synchronous motors’, IEEE Trans. Magn., 2015, 51, (3), pp. 14.
    16. 16)
      • 25. Fang, Y., Chen, H.C., Zhang, T.: ‘Contribution of acoustic harmonics to sound quality of pure electric powertrains’, IET Electr. Power Appl., 2018, 12, (6), pp. 808814.
    17. 17)
      • 4. Cerrato, G.: ‘Automotive sound quality - powertrain, road and wind noise’, Sound Vib., 2009, 43, (4), pp. 1624.
    18. 18)
      • 14. Fakam, M., Hecquet, M., Lanfranchi, V., et al: ‘Design and magnetic noise reduction of the surface permanent magnet synchronous machine using complex air-gap permeance’, IEEE Trans. Magn., 2015, 51, (4), pp. 19.
    19. 19)
      • 15. Bayless, J., Kurihara, N., Sugimoto, H., et al: ‘Acoustic noise reduction of switched reluctance motor with reduced RMS current and enhanced efficiency’, IEEE T. Energy Conver., 2016, 31, (2), pp. 627636.
    20. 20)
      • 1. Ma, C.G., Chen, C.Y., Liu, Q.H., et al: ‘Sound quality evaluation of the interior noise of pure electric vehicle based on neural network model’, IEEE Trans. Ind. Electron., 2017, 64, (12), pp. 94429450.
    21. 21)
      • 26. Lin, Y.P., Vaidyanathan, P.P.: ‘A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks’, IEEE Signal. Proc. Let., 1998, 5, (6), pp. 132134.
    22. 22)
      • 21. Wang, N., Er, M.J., Han, M.: ‘Fault diagnosis in internal combustion engines using extension neural network’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 14341443.
    23. 23)
      • 31. Tsoumas, I.P., Tischmacher, H.: ‘Influence of the inverter's modulation technique on the audible noise of electric motors’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 269278.
    24. 24)
      • 3. Swart, D.J., Bekker, A., Bienert, J.: ‘The subjective dimensions of sound quality of standard production electric vehicles’, Appl. Acoust., 2018, 129, pp. 354364.
    25. 25)
      • 29. Liu, Z.J., Li, J.T.: ‘Accurate prediction of magnetic field and magnetic forces in permanent magnet motors using an analytical solution’, IEEE Trans. Energy Conver., 2008, 23, (3), pp. 717726.
    26. 26)
      • 19. Berckmans, D., Janssens, K., Van der Auweraer, H., et al: ‘Model-based synthesis of aircraft noise to quantify human perception of sound quality and annoyance’, J. Sound Vibr., 2008, 311, (3–5), pp. 11751195.
    27. 27)
      • 8. Akcay, H., Germen, E.: ‘Subspace-based identification of acoustic noise Spectra in induction motors’, IEEE Trans. Energy Conver., 2015, 30, (1), pp. 3240.
    28. 28)
      • 28. Gieras, J.F., Wang, C., Lai, J.C.: ‘Noise of polyphase electric motors’ (CRC Press, Boca Raton, USA, 2006), pp. 107215.
    29. 29)
      • 11. Islam, M.S., Islam, R., Sebastian, T.: ‘Noise and vibration characteristics of permanent-magnet synchronous motors using electromagnetic and structural analyses’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 32143222.
    30. 30)
      • 17. Zuo, S.G., Lin, F., Wu, X.D.: ‘Noise analysis, calculation, and reduction of external rotor permanent-magnet synchronous motor’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 62046212.
    31. 31)
      • 23. Ganesh, B., Kumar, V.V., Rani, K.Y.: ‘Modeling of batch processes using explicitly time-dependent artificial neural networks’, IEEE Trans. Neural Netw. Lear. Syst., 2014, 25, (5), pp. 970979.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0088
Loading

Related content

content/journals/10.1049/iet-epa.2019.0088
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading