Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Control strategies for non-sinusoidal multiphase PMSM drives in faulty modes under constraints on copper losses and peak phase voltage

In the context of future permanent magnet synchronous machines (PMSMs) with a high number of phases (>7) in integrated drives, this study proposes several control strategies when multiphase PMSMs with non-sinusoidal back electromotive forces (back-EMFs) operate in healthy and open-circuit faults. In all operation modes, the considered constraint on current is related to the maximum root mean square current allowable in one phase of the machine. The constraint on voltage limits the maximum peak value of the phase voltage determined by the DC-bus voltage of the converter. When one or two phases are open-circuited, to maximise torque and respect the constraints, new current references obtained by several proposed methods in rotating and natural frames are imposed to the machine. Owing to the non-sinusoidal waveform of back-EMFs and the considered constraints, numerical computations based on analytical formulations are required to obtain maximal torque-speed characteristics, including the flux-weakening operation. The usefulness of the proposed strategies is verified by numerical and experimental results.

References

    1. 1)
      • 18. Tian, B., An, Q.T., Duan, J.D., et al: ‘Cancellation of torque ripples with FOC strategy under two-phase failures of the five-phase PM motor’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 54595472.
    2. 2)
      • 23. Mohammadpour, A., Parsa, L.: ‘A unified fault-tolerant current control approach for five-phase PM motors with trapezoidal back EMF under different stator winding connections’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 35173527.
    3. 3)
      • 30. Lu, H., Li, J., Qu, R., et al: ‘Fault-tolerant predictive current control with two-vector modulation for six-phase permanent magnet synchronous machine drives’, IET Electr. Power Appl., 2018, 12, (2), pp. 169178.
    4. 4)
      • 25. Locment, F., Semail, E., Kestelyn, X.: ‘Vectorial approach-based control of a seven-phase axial flux machine designed for fault operation’, IEEE Trans. Ind. Electron., 2008, 55, (10), pp. 36823691.
    5. 5)
      • 5. Trabelsi, M., Nguyen, N.K., Semail, E.: ‘Real-time switches fault diagnosis based on typical operating characteristics of five-phase permanent-magnetic synchronous machines’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 46834694.
    6. 6)
      • 4. Duran, M.J., Barrero, F.: ‘Recent advances in the design, modeling, and control of multiphase machines part II’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 459468.
    7. 7)
      • 8. El-Refaie, A.M.: ‘Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 107121.
    8. 8)
      • 33. Locment, F., Semail, E., Piriou, F.: ‘Design and study of a multiphase axial-flux machine’, IEEE Trans. Magn., 2006, 42, (4), pp. 14271430.
    9. 9)
      • 14. Fall, O., Nguyen, N.K., Charpentier, J.F., et al: ‘Variable speed control of a 5-phase permanent magnet synchronous generator including voltage and current limits in healthy and open-circuited modes’, Electr. Power Syst. Res., 2016, 140, pp. 507516.
    10. 10)
      • 1. Levi, E.: ‘Multiphase electric machines for variable- speed applications’, IEEE Trans. Ind. Electron., 2008, 55, (5), pp. 18931909.
    11. 11)
      • 26. Che, H.S., Duran, M.J., Levi, E., et al: ‘Postfault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 54065416.
    12. 12)
      • 35. Toliyat, H.A.: ‘Analysis and simulation of five-phase variable-speed induction motor drives under asymmetrical connections’, IEEE Trans. Power Electron., 1998, 13, (4), pp. 748756.
    13. 13)
      • 22. Dwari, S., Parsa, L.: ‘Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 476485.
    14. 14)
      • 21. Liu, G., Lin, Z., Zhao, W., et al: ‘Third harmonic current injection in fault-tolerant five-phase permanent-magnet motor drive’, IEEE Trans. Power Electron., 2018, 33, (8), pp. 69706979.
    15. 15)
      • 38. Kestelyn, X., Semail, E.: ‘A vectorial approach for generation of optimal current references for multiphase permanent-magnet synchronous machines in real time’, IEEE Trans. Ind. Electron., 2011, 58, (11), pp. 50575065.
    16. 16)
      • 24. Dwari, S., Parsa, L.: ‘Open-circuit fault tolerant control of five-phase permanent magnet motors with third-harmonic back-EMF’. Proc. 34th Annual Conf. of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008, pp. 31143119.
    17. 17)
      • 3. Barrero, F., Duran, M.J.: ‘Recent advances in the design, modeling, and control of multiphase machines part I’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 449458.
    18. 18)
      • 6. Trabelsi, M., Semail, E., Nguyen, N.K.: ‘Experimental investigation of inverter open-circuit fault diagnosis for bi-harmonic five-phase permanent magnet drive’, IEEE J. Emerging Sel. Top. Power Electron., 2018, 6, (1), pp. 339351.
    19. 19)
      • 36. Vu, D.T., Nguyen, N.K., Semail, E.: ‘Sensitivity of torque control for seven-phase BLDC machine with one opened phase under constraints on voltage and current’. Proc. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018, pp. 142148.
    20. 20)
      • 16. Guzmán, H., Durán, M.J., Barrero, F.: ‘A comprehensive fault analysis of a five-phase induction motor drive with an open phase’. Proc. 15th Int. Power Electronics and Motion Control Conf. (EPE/PEMC), Novi Sad, Serbia, 4–6 September 2012, pp. LS5b.3-1LS5b.3-6.
    21. 21)
      • 28. Sun, Z., Wang, J., Jewell, G.W., et al: ‘Enhanced optimal torque control of fault-tolerant pm machine under flux-weakening operation’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 344353.
    22. 22)
      • 20. Zhou, H., Zhao, W., Liu, G., et al: ‘Remedial field-oriented control of five-phase fault-tolerant permanent-magnet motor by using reduced-order transformation matrices’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 169178.
    23. 23)
      • 9. Boglietti, A., El-Refaie, A.M., Drubel, O., et al: ‘Electrical machine topologies: hottest topics in the electrical machine research community’, IEEE Ind. Electron. Mag., 2014, 8, (2), pp. 1830.
    24. 24)
      • 39. Flieller, D., Nguyen, N.K., Wira, P., et al: ‘A self-learning solution for torque ripple reduction for nonsinusoidal permanent-magnet motor drives based on artificial neural networks’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 655666.
    25. 25)
      • 12. Burkhardt, Y., Spagnolo, A., Lucas, P., et al: ‘Design and analysis of a highly integrated 9-phase drivetrain for EV applications’. Proc. 2014 Int. Conf. on Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014, pp. 450456.
    26. 26)
      • 34. Semail, E., Kestelyn, X., Bouscayrol, A.: ‘Right harmonic spectrum for the back-electromotive force of an n-phase synchronous motor’. Proc. the 39th IEEE Industry Applications Conf., Seattle, WA, USA, 3–7 October 2004, pp. 7178.
    27. 27)
      • 7. Semail, E., Bouscayrol, A., Hautier, J.P.: ‘Vectorial formalism for analysis and design of polyphase synchronous machines’, Eur. Phys. J. AP, 2003, 22, (3), pp. 207220.
    28. 28)
      • 11. Bojoi, R., Rubino, S., Tenconi, A., et al: ‘Multiphase electrical machines and drives: a viable solution for energy generation and transportation electrification’. Proc. Int. Conf. and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 20–22 October 2016, pp. 632639.
    29. 29)
      • 29. Bermudez, M., Gomozov, O., Kestelyn, X., et al: ‘Model predictive optimal control considering current and voltage limitations: real-time validation using opal-RT technologies and five-phase permanent magnet synchronous machines’, Math. Comput. Simul., 2019, 158, pp. 148161.
    30. 30)
      • 13. Jen-Ren, F., Lipo, T.A.: ‘Disturbance-free operation of a multiphase current-regulated motor drive with an opened phase’, IEEE Trans. Ind. Appl., 1994, 30, (5), pp. 12671274.
    31. 31)
      • 17. Guzman, H., Duran, M.J., Barrero, F., et al: ‘Comparative study of predictive and resonant controllers in fault-tolerant five-phase induction motor drives’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 606617.
    32. 32)
      • 15. Hyung-Min, R., Ji-Woong, K., Seung-Ki, S.: ‘Synchronous-frame current control of multiphase synchronous motor under asymmetric fault condition due to open phases’, IEEE Trans. Ind. Appl., 2006, 42, (4), pp. 10621070.
    33. 33)
      • 19. Tian, B., An, Q.T., Duan, J.D., et al: ‘Decoupled modeling and nonlinear speed control for five-phase pm motor under single-phase open fault’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 54735486.
    34. 34)
      • 37. Dwari, S., Parsa, L.: ‘An optimal control technique for multiphase PM machines under open-circuit faults’, IEEE Trans. Ind. Electron., 2008, 55, (5), pp. 19881995.
    35. 35)
      • 32. Locment, F., Semail, E., Kestelyn, X.: ‘Optimum use of DC bus by fitting the back-electromotive force of a 7-phase permanent magnet synchronous machine’. Proc. European Conf. on Power Electronics and Applications, Dresden, Germany, 11–14 September 2005, pp. 19.
    36. 36)
      • 27. Munim, W.N.W.A., Che, H.S., Hew, W.P.: ‘Fault tolerant capability of symmetrical multiphase machines under one open-circuit fault’. Proc. 4th IET Clean Energy and Technology Conf. (CEAT 2016), Kuala Lumpur, Malaysia, 14–15 November 2016, pp. 16.
    37. 37)
      • 31. Vu, D.T., Nguyen, N.K., Semail, E., et al: ‘Torque optimization of seven-phase BLDC machines in normal and degraded modes with constraints on current and voltage’. Proc. 9th Int. Conf. on Power Electronics, Machines and Drives, Liverpool, UK, April 2018.
    38. 38)
      • 2. Levi, E., Bojoi, R., Profumo, F., et al: ‘Multiphase induction motor drives – a technology status review’, IET Electr. Power Appl., 2007, 1, (4), pp. 489516.
    39. 39)
      • 10. Dajaku, G., Gerling, D.: ‘Opportunities of advanced multi-phase concentrated windings’. Proc. 13th Int. Conf. on Electrical Machines (ICEM), Alexandroupoli, Greece, 3–6 September 2018, pp. 325331.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0056
Loading

Related content

content/journals/10.1049/iet-epa.2019.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address