access icon free Fault-tolerant FOC for five-phase SPMSM with non-sinusoidal back EMF

A fault-tolerant field-oriented control (FOC) is proposed for five-phase surface-mounted permanent magnet synchronous motor (SPMSM) with non-sinusoidal back electromotive force under single-phase open-circuit fault. On the basis of the concept of preserving the circular rotation of fundamental magnetic motive force and PM flux linkage, the decoupled model of five-phase SPMSM under single-phase open-circuit fault is derived. To suppress the torque ripples caused by third-harmonic content of PM flux linkage, the closed-form solution of current references with zero-torque pulsation in the synchronous coordinate is presented. Then, the presented solution is used for obtaining optimum current references to achieve minimum stator winding losses and maximum available torque while satisfying the zero-torque-pulsation constraint. The optimal current references generation method is simple and is suitable for real-time implementation. The experimental results confirm that the proposed method can effectively suppress the torque ripples and produce lower stator winding losses as well as wider-torque operation range compared with traditional fault-tolerant FOC method.

Inspec keywords: electric potential; fault diagnosis; fault tolerant control; machine vector control; synchronous motors; stators; permanent magnet motors; torque control

Other keywords: nonsinusoidal back electromotive force; five-phase surface-mounted permanent magnet synchronous motor; optimal current references generation method; nonsinusoidal back EMF; maximum available torque; zero-torque pulsation; synchronous coordinate; circular rotation; third-harmonic content; minimum stator winding losses; zero-torque-pulsation constraint; SPMSM; torque ripple suppression; PM flux linkage; optimum current references; fault-tolerant field-oriented control; electromotive force; traditional fault-tolerant FOC method; fundamental magnetic motive force; single-phase open-circuit fault

Subjects: Control of electric power systems; Mechanical variables control; Synchronous machines

References

    1. 1)
      • 8. Duran, M.J., Barrero, F.: ‘Recent advances in the design, modeling, and control of multiphase machines – part II’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 459468.
    2. 2)
      • 17. Liu, G., Lin, Z., Zhao, W., et al: ‘Third harmonic current injection in fault-tolerant five-phase permanent-magnet motor drive’, IEEE Trans. Power Electron., 2018, 33, (8), pp. 69706979.
    3. 3)
      • 22. Dwari, S., Parsa, L., Lipo, T.A.: ‘Optimum control of a five-phase integrated modular permanent magnet motor under normal and open-circuit fault conditions’. IEEE Power Electronics Specialists Conf., 2007, pp. 16391644.
    4. 4)
      • 2. Levi, E., Bojoi, R., Profumo, F., et al: ‘Multiphase induction motor drives – a technology status review’, IET Electr. Power Appl., 2007, 1, (4), pp. 489516.
    5. 5)
      • 30. Dwari, S., Parsa, L.: ‘Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 476485.
    6. 6)
      • 14. Mohammadpour, A., Parsa, L.: ‘Global fault-tolerant control technique for multiphase permanent-magnet machine’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 178186.
    7. 7)
      • 36. Che, H.S., Duran, M.J., Levi, E., et al: ‘Post-fault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 54065416.
    8. 8)
      • 40. Yepes, A.G., Freijedo, F.D., Lopez, Ó., et al: ‘High-performance digital resonant controllers implemented with two integrators’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 563576.
    9. 9)
      • 31. Guzman, H., Duran, M.J., Barrero, F., et al: ‘Speed control of five-phase induction motors with integrated open-phase fault operation using model-based predictive current control techniques’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 44744484.
    10. 10)
      • 4. Jung, E., Yoo, H., Sul, S., et al: ‘A nine-phase permanent-magnet motor drive system for an ultra-high-speed elevator’, IEEE Trans. Ind. Appl., 2012, 48, (3), pp. 987995.
    11. 11)
      • 7. Sulligoi, G., Tessarolo, A., Benucci, V., et al: ‘Shipboard power generation: design and development of a medium-voltage dc generation system’, IEEE Ind. Appl. Mag., 2013, 19, (4), pp. 4755.
    12. 12)
      • 10. Guzman, H., Duran, M.J., Barrero, F., et al: ‘Comparative study of predictive and resonant controllers in fault-tolerant five-phase induction motor drives’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 606617.
    13. 13)
      • 5. Yaramasu, V., Dekka, A., Durán, M.J., et al: ‘PMSG-based wind energy conversion systems: survey on power converters and controls’, IET Electr. Power Appl., 2017, 11, (6), pp. 956968.
    14. 14)
      • 15. Zhou, H., Zhao, W., Liu, G., et al: ‘Remedial field-oriented control of five-phase fault-tolerant permanent-magnet motor by using reduced-order transformation matrices’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 169178.
    15. 15)
      • 19. Liu, G., Qu, L., Zhao, W., et al: ‘Comparison of two SVPWM control strategies of five-phase fault-tolerant permanent-magnet motor’, IEEE Trans. Power Electron., 2016, 31, (9), pp. 66216630.
    16. 16)
      • 34. Lin, F.J., Hung, Y.C., Tsai, M.T.: ‘Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding-mode control using TSKFNN-AMF’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 57475762.
    17. 17)
      • 1. Levi, E.: ‘Multiphase electric machines for variable- speed applications’, IEEE Trans. Ind. Electron., 2008, 55, (5), pp. 18931909.
    18. 18)
      • 26. Mohammadpour, A., Mishra, S., Parsa, L.: ‘Fault-tolerant operation of multiphase permanent-magnet machines using iterative learning control’, IEEE J. Emerging Sel. Top. Power Electron., 2014, 2, (2), pp. 201211.
    19. 19)
      • 38. Tian, B., An, Q.T., Duan, J.D., et al: ‘Cancellation of torque ripples with FOC strategy under two-phase failures of the five-phase PM motor’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 54595472.
    20. 20)
      • 11. Bianchi, N., Bolognani, S., Pre, M.D.: ‘Strategies for the fault-tolerant current control of a five-phase permanent-magnet motor’, IEEE Trans. Ind. Appl., 2007, 43, (4), pp. 960970.
    21. 21)
      • 23. Sun, Z., Wang, J., Jewell, G., et al: ‘Enhanced optimal torque control of fault-tolerant PM machine under flux-weakening operation’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 344353.
    22. 22)
      • 25. Sedrine, E.B., Ojeda, J., Gabsi, M., et al: ‘Fault-tolerant control using the GA optimization considering the reluctance torque of a five-phase flux switching machine’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 927938.
    23. 23)
      • 21. Dwari, S., Parsa, L.: ‘An optimal control technique for multiphase PM machines under open-circuit faults’, IEEE Trans. Ind. Electron., 2008, 55, (5), pp. 19881995.
    24. 24)
      • 20. Zhao, W., Cheng, M., Hua, W., et al: ‘Back-EMF harmonic analysis and fault-tolerant control of flux-switching permanent-magnet machine with redundancy’, IEEE Trans. Ind. Electron., 2011, 58, (5), pp. 19261935.
    25. 25)
      • 28. Parsa, L., Toliyat, H.A.: ‘Fault-tolerant interior-permanent-magnet machines for hybrid electric vehicle applications’, IEEE Trans. Veh. Technol., 2007, 56, (4), pp. 15461552.
    26. 26)
      • 35. Fnaiech, M.A., Betin, F., Capolino, G.A., et al: ‘Fuzzy logic and sliding-mode controls applied to six-phase induction machine with open phases’, IEEE Trans. Energy Convers., 2010, 57, (1), pp. 354364.
    27. 27)
      • 16. Tian, B., An, Q.T., Duan, M.J., et al: ‘Decoupled modeling and nonlinear speed control for five-phase PM motor under single-phase open fault’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 54735486.
    28. 28)
      • 12. Dwari, S., Parsa, L.: ‘Open-circuit fault tolerant control of five-phase permanent magnet motors with third-harmonic back-EMF’. 2008 34th Annual Conf. IEEE Industrial Electronics, 2008, pp. 31143119.
    29. 29)
      • 33. Salehifar, M., Arashloo, R.S., Moreno-Eguilaz, M., et al: ‘Observer-based open transistor fault diagnosis and fault-tolerant control of five-phase permanent magnet motor drive for application in electric vehicles’, IET Power Electron., 2015, 8, (1), pp. 7687.
    30. 30)
      • 37. Tian, B., Mirzaeva, G., An, Q., et al: ‘Fault-tolerant control of a five-phase permanent magnet synchronous motor for industry applications’, IEEE Trans. Ind. Appl., 2018, 58, (2), pp. 476485.
    31. 31)
      • 18. Zhou, H., Liu, G., Zhao, W., et al: ‘Dynamic performance improvement of five-phase permanent-magnet motor with short-circuit fault’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 145155.
    32. 32)
      • 6. Cavagnino, A., Li, Z., Tenconi, A., et al: ‘Integrated generator for more electric engine: design and testing of a scaled-size prototype’, IEEE Trans. Ind. Appl., 2013, 49, (5), pp. 20342043.
    33. 33)
      • 27. Jen-Ren, F., Lipo, T.A.: ‘Disturbance-free operation of a multiphase current-regulated motor drive with an opened phase’, IEEE Trans. Ind. Appl., 1994, 30, (5), pp. 12671274.
    34. 34)
      • 29. Chen, Q., Liu, G., Zhao, W., et al: ‘Asymmetrical SVPWM fault-tolerant control of five-phase PM brushless motors’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 1222.
    35. 35)
      • 32. Tani, A., Mengoni, M., Zarri, L., et al: ‘Control of multiphase induction motors with an odd number of phases under open-circuit phase faults’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 565577.
    36. 36)
      • 9. Betin, F., Capolino, G.A., Casadei, D., et al: ‘Trends in electrical machines control: samples for classical, sensorless, and fault-tolerant techniques’, IEEE Ind. Electron. Mag., 2014, 8, (2), pp. 4355.
    37. 37)
      • 39. Cheng, L., Sui, Y., Zheng, P., et al: ‘Implementation of post-fault decoupling vector control and mitigation of current ripple for five-phase fault-tolerant PM machine under single-phase open-circuit fault’, IEEE Trans. Power Electron., 2018, 33, (10), pp. 86238636.
    38. 38)
      • 24. Mohammadpour, A., Sadeghi, S., Parsa, L.: ‘Fault-tolerant control of five-phase PM machines with pentagon connection of stator windings under open-circuit faults’. 27th Annual IEEE Applied Power Electronics Conf. Exposition (APEC), 2012, pp. 16671672.
    39. 39)
      • 13. Mohammadpour, A., Sadeghi, S., Parsa, L.: ‘A generalized fault-tolerant control strategy for five-phase PM motor drives considering star, pentagon, and pentacle connections of stator windings’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 35173527.
    40. 40)
      • 3. Barrero, F., Duran, M.J.: ‘Recent advances in the design, modeling, and control of multiphase machines – part I’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 449458.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0055
Loading

Related content

content/journals/10.1049/iet-epa.2019.0055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading