access icon free Grid-connected medium-voltage converters with parallel voltage-source active filters

Grid-connected medium-voltage converters are typically operated at switching frequencies of several hundred hertz per switch position, requiring bulky and expensive LCL filters in order to meet the harmonic limits given by the grid code. Commonly, semiconductor current derating and increased switching frequencies are used to reduce the LCL-filter costs, leading to a reduced utilisation and efficiency of the converter system. To overcome these disadvantages of conventional converter systems, the presented hybrid converter uses a parallel voltage-source active output filter and thus allows a significant reduction of the passive component demand. The harmonic performance is improved for the operation with small passive filter components, revealing the potential for increasing the utilisation and efficiency of high power medium-voltage converters. As a result, significant reductions of the filter losses and passive components as well as an increased output power are achieved compared to a reference LCL-filter-based converter system.

Inspec keywords: power grids; power convertors; power harmonic filters; switching convertors; power filters; passive filters; electric current control; invertors; active filters

Other keywords: LCL-filter costs; conventional converter systems; grid-connected medium-voltage converters; switching frequencies; parallel voltage-source active filters; expensive LCL; efficiency; reference LCL-filter-based converter system; presented hybrid converter; high power medium-voltage converters; parallel voltage-source active output filter; passive filter components; filter losses; reduced utilisation; switch position; grid code; bulky LCL

Subjects: Power convertors and power supplies to apparatus; Power supply quality and harmonics; Current control; Control of electric power systems; Other power apparatus and electric machines

References

    1. 1)
      • 15. Trzynadlowski, A., Blaabjerg, F., Pedersen, J., et al: ‘A tandem inverter for high-performance AC drives’. Conf. Record of 1998 IEEE Industry Applications Conf. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), St. Louis, MO, USA, 1998.
    2. 2)
      • 8. Gong, G., Ertl, H., Kolar, J.: ‘A multi-cell cascaded power amplifier’. Twenty-First Annual IEEE Applied Power Electronics Conf. and Exposition APEC'06, Dallas, TX, USA, 2006.
    3. 3)
      • 26. Pereira, M., Retzmann, D., Lottes, J., et al: ‘SVC PLUS: An MMC STATCOM for network and grid access applications’. 2011 IEEE Trondheim PowerTech, Trondheim, Norway, June 2011.
    4. 4)
      • 3. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems.
    5. 5)
      • 16. Gioia, A.D., Brown, I.P.: ‘Silicon and hybrid Si-SiC tandem inverter analytical loss characterization and comparison to PWM-modulated voltage source inverter’. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, September 2015.
    6. 6)
      • 6. Beltrame, R.C., da Silva Martins, M.L., Rech, C., et al: ‘Hybrid power amplifiers – a review’. XI Brazilian Power Electronics Conf., Praiamar, Brazil, September 2011.
    7. 7)
      • 28. Rohner, S.: ‘Untersuchung des Modularen Mehrpunktstromrichters M2C für Mittelspannungsanwendungen’. PhD thesis, TU Dresden, 2010.
    8. 8)
      • 30. Jalili, K., Bernet, S.: ‘Design of LCL filters of active-front-end two-level voltage-source converters’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 16741689.
    9. 9)
      • 7. da Silva, G.S., Beltrame, R.C., Schuch, L., et al: ‘Hybrid AC power source based on modular multilevel converter and linear amplifier’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 216226.
    10. 10)
      • 34. Acharya, S., Anurag, A., Prabowo, Y., et al: ‘Practical design considerations for MV LCL filter under high dv/dt conditions considering the effects of parasitic elements’. 2018 9th IEEE Int. Symp. on Power Electronics for Distributed Generation Systems (PEDG), Charlotte, NC, USA, June 2018.
    11. 11)
      • 18. Singh, B., Verma, V., Chandra, A., et al: ‘Hybrid filters for power quality improvement’, IEE Proc. – Gener. Transm. Distrib., 2005, 152, (3), p. 365.
    12. 12)
      • 27. ABB AB: ‘SVC light: For electrical transmission grids’, Brochure ABB FACTS, Vasteras, Sweden, 2014.
    13. 13)
      • 9. Gopalarathnam, T., Manjrekar, M., Steimer, P.: ‘Investigations on a unified controller for a practical hybrid multilevel power converter’. APEC. Seventeenth Annual IEEE Applied Power Electronics Conf. and Exposition, Dallas, TX, USA, 2002.
    14. 14)
      • 22. Bernet, D., Stefanski, L., Schwendemann, R., et al: ‘Grid-connected voltage source converters with integrated multilevel-based active filters’. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, September 2018.
    15. 15)
      • 5. Yundt, G.B.: ‘Series- or parallel-connected composite amplifiers’, IEEE Trans. Power Electron., 1986, PE-1, (1), pp. 4854.
    16. 16)
      • 17. Singh, B., Al-Haddad, K., Chandra, A.: ‘A review of active filters for power quality improvement’, IEEE Trans. Ind. Electron., 1999, 46, (5), pp. 960971.
    17. 17)
      • 2. Bruckner, T., Bernet, S., Steimer, P.: ‘The active NPC converter for medium-voltage applications’. Fourteenth IAS Annual Meeting Conf. Record of the 2005 Industry Applications Conf., Kowloon, Hong Kong, China, 2005.
    18. 18)
      • 12. Huber, J., Kolar, J., Pammer, G.: ‘Hybrid inverter concept for extreme bandwidth high-power AC source’, Electron. Lett., 2017, 53, (14), pp. 947949.
    19. 19)
      • 24. Sano, K., Takasaki, M.: ‘A transformerless D-STATCOM based on a multivoltage cascade converter requiring No DC sources’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 27832795.
    20. 20)
      • 32. Zabaleta, M., Burguete, E., Madariaga, D., et al: ‘LCL grid filter design of a multimegawatt medium-voltage converter for offshore wind turbine using SHEPWM modulation’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 19932001.
    21. 21)
      • 14. Trznadlowski, A., Blaabjerg, F., Pedersen, J., et al: ‘The tandem inverter: combining the advantages of voltagesource and current-source inverters’. APEC ‘98 Thirteenth Annual Applied Power Electronics Conf. and Exposition, Anaheim, CA, USA, 1998.
    22. 22)
      • 31. Rockhill, A.A., Liserre, M., Teodorescu, R., et al: ‘Grid-filter design for a multimegawatt medium-voltage voltage-source inverter’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12051217.
    23. 23)
      • 21. Sato, Y., Kawamura, K., Morimoto, H., et al: ‘Hybrid PWM rectifiers to reduce electromagnetic interference’. Conf. Record of the 2002 IEEE Industry Applications Conf. 37th IAS Annual Meeting, Pittsburgh, PA, USA, 2002.
    24. 24)
      • 20. Ferreira, S.C., Gonzatti, R.B., Pereira, R.R., et al: ‘Finite control set model predictive control for dynamic reactive power compensation with hybrid active power filters’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 26082617.
    25. 25)
      • 25. Behrouzian, E.: ‘On control of cascaded H-bridge converters for STATCOM applications’. PhD thesis, Chalmers University of Technology, 2017.
    26. 26)
      • 23. Townsend, C.D., Summers, T.J., Betz, R.E.: ‘Phase-shifted carrier modulation techniques for cascaded H-bridge multilevel converters’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 66846696.
    27. 27)
      • 35. Aceiton, R., Weber, J., Bernet, S.: ‘Input filter for a power electronics transformer in a railway traction application’, IEEE Trans. Ind. Electron., 2018, 37, pp. 637641.
    28. 28)
      • 19. Beddingfield, R., Storelli, D., Mirzaee, H., et al: ‘Performance investigation of hybrid active filter during low load condition’. 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, October 2017.
    29. 29)
      • 11. Saeedifard, M., Barbosa, P.M., Steimer, P.K.: ‘Operation and control of a hybrid seven-level converter’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 652660.
    30. 30)
      • 29. Liserre, M., Blaabjerg, F., Hansen, S.: ‘Design and control of an LCL-filter-based three-phase active rectifier’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12811291.
    31. 31)
      • 1. Krug, D., Bernet, S., Fazel, S.S., et al: ‘Comparison of 2.3-kV medium-voltage multilevel converters for industrial medium-voltage drives’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 29792992.
    32. 32)
      • 13. Ertl, H., Kolar, J.W., Zach, F.C.: ‘A novel switch-mode power amplifier with high output voltage quality employing a hybrid output voltage filter’. PCIM Power Conversion & Intelligent Motion Conf., Nuremberg, Germany, 1997.
    33. 33)
      • 10. Manjrekar, M., Steimer, P., Lipo, T.: ‘Hybrid multilevel power conversion system: a competitive solution for highpower applications’, IEEE Trans. Ind. Appl., 2000, 36, (3), pp. 834841.
    34. 34)
      • 4. Geyer, T.: ‘A comparison of control and modulation schemes for medium-voltage drives: emerging predictive control concepts versus PWM-based schemes’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 13801389.
    35. 35)
      • 33. San-Sebastian, J., Etxeberria-Otadui, I., Rujas, A., et al: ‘Optimized LCL filter design methodology applied to MV grid-connected multimegawatt VSC’. 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, September 2012.
    36. 36)
      • 36. Celanovic, N., Boroyevich, D.: ‘A fast space-vector modulation algorithm for multilevel three-phase converters’, IEEE Trans. Ind. Appl., 2001, 37, (2), pp. 637641.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0021
Loading

Related content

content/journals/10.1049/iet-epa.2019.0021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading