access icon free Improved ZSVC-based fault detection technique for incipient stage inter-turn fault in PMSM

Fault detection plays an important role in providing reliable operation for permanent-magnet synchronous machine (PMSM). The inter-turn fault is one of the most common faults for the PMSM. Hence, this study focuses on the incipient stage inter-turn fault detection. An improved zero-sequence voltage component-based (ZSVC) inter-turn fault detection method is proposed. In the proposed method, discrete wavelet transform is first applied to remove the noise and harmonic components in the ZSVC for highlighting the fault characteristic component. Then, fast Fourier transform is used to analyse the obtained signal for the inter-turn fault detection. In addition, to show the performance of the proposed method, the commonly used fault detection based on stator current is studied. The effectiveness of the proposed fault diagnosis method is validated by the simulation and experimental results, showing that the proposed method has good performance for the incipient stage inter-turn fault diagnosis.

Inspec keywords: harmonic analysis; fast Fourier transforms; stators; fault diagnosis; synchronous machines; discrete wavelet transforms; permanent magnet machines; machine theory

Other keywords: zero-sequence voltage component-based inter-turn fault detection method; fast Fourier transform; permanent-magnet synchronous machine; harmonic components; ZSVC-based fault detection technique; fault diagnosis method; stator current; PMSM; discrete wavelet transform

Subjects: Synchronous machines; Integral transforms

References

    1. 1)
      • 25. Urresty, J.C., Riba, J.R., Romeral, L.: ‘Application of the zero-sequence voltage component to detect stator winding inter-turn faults in PMSMs’, Electr. Power Syst. Res., 2012, 8, (89), pp. 3844.
    2. 2)
      • 8. Yang, Z., Shi, X., Krishnamurthy, M.: ‘Vibration monitoring of PM synchronous machine with partial demagnetization and inter-turn short circuit faults’. Proc. IEEE ITEC, Dearborn, USA, June 2014, pp. 16.
    3. 3)
      • 15. Neti, P., Nandi, S.: ‘Stator interturn fault detection of synchronous machines using field current and rotor search-coil voltage signature analysis’, IEEE Trans. Ind. Appl., 2009, 6, (45), pp. 911920.
    4. 4)
      • 9. Jeong, H., Moon, S., Kim, S.W.: ‘An early stage inter-turn fault diagnosis of PMSMs by using negative-sequence components’, IEEE Trans. Ind. Electron., 2017, 7, (64), pp. 57015708.
    5. 5)
      • 5. Choi, S., Haque, M. S., Tarek, M.T.B., et al: ‘Fault diagnosis techniques for permanent magnet AC machine and drives-a review of current state of the art’, IEEE Trans. Transp. Electrification, 2018, 6, (4), pp. 444463.
    6. 6)
      • 22. Ebrahimi, B.M., Faiz, J.: ‘Feature extraction for short-circuit fault detection in permanent-magnet synchronous motors using stator-current monitoring’, IEEE Trans. Power Electron., 2010, 10, (25), pp. 26732682.
    7. 7)
      • 16. Sarikhani, A., Mohammed, A.O.: ‘Inter-turn fault detection in PM synchronous machines by physics based back electromotive force estimation’, IEEE Trans. Ind. Electron., 2013, 8, (60), pp. 34723484.
    8. 8)
      • 12. Cui, R.H., Fan, Y., Li, C.X.: ‘On-line inter-turn short-circuit fault diagnosis and torque ripple minimization control strategy based on OW five-phase BFTHE-IPM’, IEEE Trans. Energy Convers., 2018, 12, (33), pp. 22002209.
    9. 9)
      • 3. Wang, W., Cheng, M., Zhang, B., et al: ‘A fault-tolerant permanent magnet traction module for subway application’, IEEE Trans. Power Electron., 2014, 4, (29), pp. 16461658.
    10. 10)
      • 18. Jawad, F., Hossein, N.K., Hossein, E.A.: ‘Inductance-based inter-turn fault detection in permanent magnet synchronous machine using magnetic equivalent circuit model’, Electr. Power Compon. Syst., 2017, 5, (45), pp. 10161030.
    11. 11)
      • 14. Yao, D., Shi, X., Krishnamurthy, M.: ‘A new approach to fault diagnostics for permanent magnet synchronous machines using electromagnetic signature analysis’, IEEE Trans. Power Electron., 2013, 8, (28), pp. 41044112.
    12. 12)
      • 1. Cheng, M., Zhu, Y.: ‘The state of the art of wind energy conversion systems and technologies: a review’, Energy Convers. Manage., 2014, 12, (88), pp. 332347.
    13. 13)
      • 11. Cheng, S., Zhang, P., Habetler, T.G.: ‘An impedance identification approach to sensitive detection and location of stator turn-to-turn faults in a closed-loop multiple-motor drive’, IEEE Trans. Ind. Electron., 2011, 5, (58), pp. 15451554.
    14. 14)
      • 24. Gandhi, A., Corrigan, T., Parsa, L.: ‘Recent advances in modeling and online detection of stator interturn faults in electrical machines’, IEEE Trans. Ind. Electron., 2011, 5, (58), pp. 15641575.
    15. 15)
      • 28. Bouzida, A., Touhami, O., Ibtiouen, R., et al: ‘Fault diagnosis in industrial induction machines through discrete wavelet transform’, IEEE Trans. Ind. Electron., 2011, 9, (58), pp. 43854395.
    16. 16)
      • 29. Kulkarni, P.G., Sahasrabudhe, A.D.: ‘Investigation on mother wavelet selection for health assessment of lathe bearings’, Int. J. Adv. Manuf. Technol., 2017, 6, (90), pp. 33173331.
    17. 17)
      • 17. Mazzoletti, M.A., Bossio, G.R., Angelo, C.H.D.: ‘A model-based strategy for interturn short-circuit fault diagnosis in PMSM’, IEEE Trans. Ind. Electron., 2017, 9, (64), pp. 72187228.
    18. 18)
      • 21. Kim, K.H.: ‘Simple online fault detecting scheme for short-circuited turn in a PMSM through current harmonic monitoring’, IEEE Trans. Ind. Electron., 2011, 6, (58), pp. 25652568.
    19. 19)
      • 4. Cheng, M., Hang, J., Zhang, J.: ‘Overview of fault diagnosis theory and method for permanent magnet machine’, Chin. J. Electr. Eng., 2015, 12, (1), pp. 2136.
    20. 20)
      • 7. Zafarani, M., Bostanci, E., Qi, Y., et al: ‘Inter-turn short circuit faults in permanent magnet synchronous machines: an extended review and comprehensive analysis’, IEEE J. Emerg. Sel. Top. Power Electron., 2019, 6, (4), pp. 21732191.
    21. 21)
      • 2. Zhu, X., Xiang, Z., Quan, L., et al: ‘Multi-mode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles’, IEEE Trans. Ind. Electron., 2018, 7, (65), pp. 53535366.
    22. 22)
      • 27. Hang, J., Zhang, J., Cheng, M., et al: ‘Online inter-turn fault diagnosis of permanent magnet synchronous machine using zero-sequence components’, IEEE Trans. Power Electron., 2015, 12, (30), pp. 67316741.
    23. 23)
      • 6. Leboeuf, N., Boileau, T., Nahid-Mobarakeh, B.: ‘Real-time detection of inter-turn faults in PM drives using back-EMF estimation and residual analysis’, IEEE Trans. Ind. Appl., 2011, 11/12, (47), pp. 24022412.
    24. 24)
      • 20. Boileau, T., Leboeuf, N., Nahid-Mobarakeh, B., et al: ‘Synchronous demodulation of control voltages for stator interturn fault detection in PMSM’, IEEE Trans. Power Electron., 2013, 12, (28), pp. 56475654.
    25. 25)
      • 13. Arellano-Padilla, J., Sumner, M., Gerada, C.: ‘Winding condition monitoring scheme for a permanent magnet machine using high-frequency injection’, IET Electr. Power Appl., 2011, 1, (5), pp. 8999.
    26. 26)
      • 10. Cruz, S.M.A., Cardoso, A.J.M.: ‘Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extend Park's Vector approach’, IEEE Trans. Ind. Appl., 2001, 9/10, (37), pp. 12271233.
    27. 27)
      • 26. Urresty, J.C., Riba, J.R., Romeral, L.: ‘Diagnosis of inter-turn faults in PMSMs operating under nonstationary conditions by applying order tracking filtering’, IEEE Trans. Power Electron., 2013, 1, (28), pp. 507515.
    28. 28)
      • 19. Henao, H., Demian, C., Capolino, G.A.: ‘A frequency-domain detection of stator winding faults in induction machines using an external flux sensor’, IEEE Trans. Ind. Appl., 2003, 9/10, (39), pp. 12721279.
    29. 29)
      • 23. Romeral, L., Urresty, J.C., Riba Ruiz, J.R., et al: ‘Modeling of surface-mounted permanent magnet synchronous motors with stator winding inter-turn faults’, IEEE Trans. Ind. Electron., 2011, 5, (58), pp. 15761585.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2019.0016
Loading

Related content

content/journals/10.1049/iet-epa.2019.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading