Variable damping injection control of PMSM drive systems based on isolated shoot-through Z-source inverter

Variable damping injection control of PMSM drive systems based on isolated shoot-through Z-source inverter

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a novel permanent magnet synchronous motor (PMSM) driven system based on isolated shoot-through Z-source inverter (IST-ZSI). The IST-ZSI is utilised to replace the traditional Z-source inverter. Compared with the conventional Z-source inverter-based PMSM drive system, the new drive system can not only solve the coupling of the boost factor and modulation but also provide a large regulation range of the output voltage. For the PMSM drive system, a variable damping injection controller is proposed via the passivity-based control and maximum torque per ampere control principle. Then, the load torque observer is designed to improve the stability of the PMSM system with uncertain load torque. The simulation and experimental results show that the variable damping injection control has satisfactory dynamic and static control performance.


    1. 1)
      • 1. Peng, F.Z., Joseph, A., Wang, J.: ‘Z-source inverter for motor drives’, IEEE Trans. Power Electron., 2005, 20, (4), pp. 857863.
    2. 2)
      • 2. Peng, F.Z., Joseph, A., Wang, J., et al: ‘Application of Z-source inverter for traction drive of fuel cell¡ªbattery hybrid electric vehicles’, IEEE Trans. Power Electron., 2015, 22, (3), pp. 10541061.
    3. 3)
      • 3. Battiston, A., Martin, J.P., Miliani, E.H., et al: ‘Comparison criteria for electric traction system using Z-source/quasi Z-source inverter and conventional architectures’, IEEE J. Emerging Sel. Topics Power Electron., 2014, 2, (3), pp. 467476.
    4. 4)
      • 4. Peng, F.Z.: ‘Z-source inverter’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 504510.
    5. 5)
      • 5. Dehghanzadeh, A.R., Behjat, V., Banaei, M.R.: ‘Double input Z-source inverter applicable in dual-star PMSG based wind turbine’, Int. J. Electr. Power Energy Syst., 2016, 82, pp. 4957.
    6. 6)
      • 6. Zhang, Y., Huang, S., Hu, S.: ‘Ride-through strategy of quasi-Z-source wind power generation system under the asymmetrical grid voltage fault’, IET Electr. Power Appl., 2017, 11, (4), pp. 504511.
    7. 7)
      • 7. Chauhan, A.K., Singh, S.K.: ‘Integrated dual-output L-Z source inverter for hybrid electric vehicle’, IEEE Trans. Transp. Electrification, 2018, 4, (3), pp. 732743.
    8. 8)
      • 8. Hu, S., Liang, Z., Fan, D., et al: ‘Implementation of Z-source converter for ultracapacitor-battery hybrid energy storage system for electric vehicle’, Trans. China Electrotech. Soc., 2017, 32, (8), pp. 247255.
    9. 9)
      • 9. Amjadi, Z., Williamson, S.S.: ‘Prototype design and controller implementation for a battery-ultracapacitor hybrid electric vehicle energy storage system’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 332340.
    10. 10)
      • 10. Xing, X., Zhang, C., Chen, A., et al: ‘Space-vector modulated method for boosting and neutral voltage balancing in z-source three-level t-type inverter’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 16211631.
    11. 11)
      • 11. Cuenot, J., Zaim, S., Nahid-Mobarakeh, B., et al: ‘Overall size optimization of a high-speed starter using a quasi-Z-source inverter’, IEEE Trans. Transp. Electrification, 2017, 3, (4), pp. 891900.
    12. 12)
      • 12. Gajanayake, C.J., Fang, L.L., Gooi, H.B., et al: ‘Extended boost Z-source inverters’, IEEE Trans. Power Electron., 2010, 25, (10), pp. 26422652.
    13. 13)
      • 13. Li, D., Gao, F., Loh, P.C., et al: ‘Hybrid-source impedance networks: layouts and generalized cascading concepts’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 20282040.
    14. 14)
      • 14. Yu, K., Xiong, B.Y., Zhao, J.Y.: ‘A comprehensive study of space vector pulse-width modulation technique for three-phase Z-source inverters’, Int. J. Circuit Theory Appl., 2016, 44, (2), pp. 364381.
    15. 15)
      • 15. Zhang, Y., Liu, J., Dong, Z., et al: ‘Maximum boost control of diode-assisted buckboost voltage-source inverter with minimum switching frequency’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 15331547.
    16. 16)
      • 16. Mahmoudi, H., Aleenejad, M., Ahmadi, R.: ‘Modulated model predictive control for a Z-source-based permanent magnet synchronous motor drive system’, IEEE Trans. Ind. Electron., 2018, 65, (10), pp. 83078319.
    17. 17)
      • 17. Battiston, A., Miliani, E., Martin, J.P., et al: ‘A control strategy for electric traction systems using a PM-motor fed by a bidirectional Z-source inverter’, IEEE Trans. Veh. Technol., 2014, 63, (9), pp. 41784191.
    18. 18)
      • 18. Battiston, A., Miliani, E.H., Pierfederici, S.: ‘Efficiency improvement of a quasi-Z-source inverter-Fed permanent-magnet synchronous machine-based electric vehicle’, IEEE Trans. Trans. Electrification, 2016, 2, (1), pp. 1423.
    19. 19)
      • 19. Mao, W.L., Suprapto, Indirect fuzzy contour tracking for X-Y PMSM actuated motion system applications’, IET Electr. Power Appl., 2018, 12, (1), pp. 1224.
    20. 20)
      • 20. Ortega, R., Perez, J.A.L., Nicklasson, P.J., et al: ‘Passivity-based control of Euler-Lagrange systems: mechanical, electrical and electromechanical applications’ (Springer Science-Business Media, London, 1998).
    21. 21)
      • 21. Yu, H., Yu, J., Liu, J., et al: ‘Nonlinear control of induction motors based on state error PCH and energy-shaping principle’, Nonlinear Dyn., 2013, 72, (12), pp. 4959.
    22. 22)
      • 22. Lv, Y., Yu, H., Liu, X.: ‘Switching control of sliding mode and passive control for DC-link voltage of isolated shoot-through Z-source inverter’. Chinese Automation Congress (CAC), Xi'an, China, 2018, pp. 26872692.
    23. 23)
      • 23. Yu, H., Zhao, K., Guo, L., et al: ‘Maximum torque per ampere control of PMSM based on port-controlled Hamiltonian theory’, Proc. Chin. Soc. Electr. Eng., 2006, 26, (8), pp. 8287.
    24. 24)
      • 24. Wu, Y., Li, G.: ‘Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer’, Mech. Syst. Signal Process., 2018, 98, pp. 402414.
    25. 25)
      • 25. Bhanu, P., Pappa, N.: ‘SVPWM: torque level controlling of wind turbine system using fuzzy and abc-dq transformation’, Int. J. Fuzzy Syst., 2016, 19, (1), pp. 114.
    26. 26)
      • 26. Zhang, H., Caijuan, Q.I., Tong, Y.: ‘Grid-connection of isolated shoot-through Z-source inverter’, Electr. Power Autom. Equip., 2014, 3, (5), pp. 10891096.
    27. 27)
      • 27. Preindl, M., Bolognani, S.: ‘Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 19121921.
    28. 28)
      • 28. Wang, D., Han, P.: ‘Variable arguments PID control for main steam temperature system based on immune genetic optimization’, Proc. CSEE, 2003, 23, (9), pp. 212217.
    29. 29)
      • 29. Yang, B., Yu, T., Shu, H.C., et al: ‘Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine’, Renew. Energy, 2018, 119, pp. 577589.

Related content

This is a required field
Please enter a valid email address