access icon free On lifetime evaluation of medium-voltage drives based on modular multilevel converter

Reliability is an important issue related to the modular multilevel converter (MMC)-based medium voltage (MV) drives. The design for reliability (DFR) approach has been discussed in many power electronic systems in recent years. MMC-based MV drives power losses and thermal cycling are strongly affected by start-up and low-speed operation, since zero-sequence current injection must be applied. In order to implement fast thermal simulations, the traditional DFR approach does not consider the heat sink thermal capacitance, which can significantly affect the MMC lifetime prediction. This article discusses how the heat sink realisations (material, thickness) affect the MMC-predicted lifetime and evaluates how the drive start-up time affects the damage in the power converter. The case study is based on a 1.4 MW slurry pump system driven by a three-phase induction motor. The lifetime evaluation of the MMC is realised through the Monte–Carlo simulation. The results show that the traditional approach results in an underestimation of up to 42.5% of the converter lifetime. In addition, long start-up times lead to a longer lifetime when compared to the shorter start-up times, due to the reduced thermal stresses in the semiconductors.

Inspec keywords: thermal stresses; heat sinks; reliability; Monte Carlo methods; power electronics; electric drives; power convertors

Other keywords: MMC-predicted lifetime; drive start-up time; low-speed operation; power electronic systems; zero-sequence current injection; heat sink realisations; MMC lifetime prediction; MMC-based MV drives power losses; power converter; converter lifetime; traditional DFR approach; power 1.4 MW; lifetime evaluation; medium-voltage drives; longer lifetime; traditional approach results; thermal simulations; modular multilevel converter-based medium voltage drives; reliability approach; thermal cycling

Subjects: Drives; Reliability; Control of electric power systems; Power convertors and power supplies to apparatus

References

    1. 1)
      • 18. Vernica, I., Ma, K., Blaabjerg, F.: ‘Optimal derating strategy of power electronics converter for maximum wind energy production with lifetime information of power devices’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (1), pp. 267276.
    2. 2)
      • 17. Yang, Y., Sangwongwanich, A., Blaabjerg, F.: ‘Design for reliability of power electronics for grid-connected photovoltaic systems’, CPSS Trans. Power Electron. Appl., 2016, 1, (1), pp. 92103.
    3. 3)
      • 36. Bayerer, R., Herrmann, T., Licht, T., et al: ‘Model for power cycling lifetime of igbt modules - various factors influencing lifetime’. 5th Int. Conf. on Integrated Power Electronics Systems, Nuremberg, Germany, 2008, pp. 16.
    4. 4)
      • 2. Saeedifard, M., Iravani, R.: ‘Dynamic performance of a modular multilevel back-to-back HVDC system’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 29032912.
    5. 5)
      • 16. Tu, P., Yang, S., Wang, P.: ‘Reliability and cost based redundancy design for modular multilevel converter’, IEEE Trans. Ind. Electron., 2018, 66, pp. 11.
    6. 6)
      • 4. Antonopoulos, A., Ängquist, L., Norrga, S., et al: ‘Modular multilevel converter ac motor drives with constant torque from zero to nominal speed’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 19821993.
    7. 7)
      • 22. Wang, H., Ma, K., Blaabjerg, F.: ‘Design for reliability of power electronic systems’. IECON – IEEE Ind. Electron. Soc., Montreal, Canada, Oct 2012, pp. 3344.
    8. 8)
      • 30. Tu, Q., Xu, Z.: ‘Power losses evaluation for modular multilevel converter with junction temperature feedback’. 2011 IEEE Power and Energy Society General Meeting, San Diego, California, USA, July 2011, pp. 17.
    9. 9)
      • 9. Dekka, A., Wu, B., Fuentes, R.L., et al: ‘Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (4), pp. 16311656.
    10. 10)
      • 19. Achiri, H.M.N., Smidl, V., Peroutka, Z.: ‘Mitigation of electric drivetrain oscillation resulting from abrupt current derating at low coolant flow rate’. IECON 2015 – IEEE Ind. Electron. Society, Yokohama, Japan, Nov 2015, pp. 003-638003-642.
    11. 11)
      • 1. Kumar, Y.S., Poddar, G.: ‘Control of medium-voltage ac motor drive for wide speed range using modular multilevel converter’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 27422749.
    12. 12)
      • 38. Sangwongwanich, A., Yang, Y., Sera, D., et al: ‘Lifetime evaluation of grid-connected PV inverters considering panel degradation rates and installation sites’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 12251236.
    13. 13)
      • 20. Maharjan, L., Yamagishi, T., Akagi, H., et al: ‘Fault-tolerant operation of a battery-energy-storage system based on a multilevel cascade PWM converter with star configuration’, IEEE Tran. Power Electron., 2010, 25, (9), pp. 23862396.
    14. 14)
      • 26. Zhang, Y., Wang, H., Wang, Z., et al: ‘Impact of the thermal-interface-material thickness on IGBT module reliability in the modular multilevel converter’. 2018 Int. Power Electron. Conf., Niigata, Japan, May 2018, pp. 27432749.
    15. 15)
      • 8. Han, X., Yang, Q., Wu, L., et al: ‘Analysis of thermal cycling stress on semiconductor devices of the modular multilevel converter for drive applications’. IEEE Applied Power Elec. Conf. and Exposition, Long Beach, California, USA, March 2016, pp. 29572962.
    16. 16)
      • 14. Macken, K.J.P., Wallace, I.T., Bollen, M.H.J.: ‘Reliability assessment of motor drives’. 2006 37th IEEE Power Elec. Spec. Conf., Jeju, South Korea, June 2006, pp. 17.
    17. 17)
      • 21. Christen, D., Stojadinovic, M., Biela, J.: ‘Energy efficient heat sink design: natural versus forced convection cooling’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 86938704.
    18. 18)
      • 3. P., M.H., Bina, M.T.: ‘A transformerless medium-voltage statcom topology based on extended modular multilevel converters’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 15341545.
    19. 19)
      • 37. Reigosa, P.D.: ‘TSmart derating of switching devices for designing more reliable PV inverters’. Master's thesis, Aalborg University, Denmark, 2014.
    20. 20)
      • 24. Xu, J., Zhao, P., Zhao, C.: ‘Reliability analysis and redundancy configuration of mmc with hybrid submodule topologies’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 27202729.
    21. 21)
      • 6. Hagiwara, M., Hasegawa, I., Akagi, H.: ‘Start-up and low-speed operation of an electric motor driven by a modular multilevel cascade inverter’, IEEE Trans. Ind. Appl., 2013, 49, (4), pp. 15561565.
    22. 22)
      • 32. IGBT-module FF200R33KF2C’ (Infineon Technologies, Neubiberg, Germany, 2015).
    23. 23)
      • 10. Kouro, S., Rodriguez, J., Wu, B., et al: ‘Powering the future of industry: high-power adjustable speed drive topologies’, IEEE Ind. Appl. Mag., 2012, 18, (4), pp. 2639.
    24. 24)
      • 15. Farias, J.V.M., Cupertino, A.F., Pereira, H.A., et al: ‘On the redundancy strategies of modular multilevel converters’, IEEE Trans. Power Deliv., 2018, 33, (2), pp. 851860.
    25. 25)
      • 5. Akagi, H.: ‘Multilevel converters: fundamental circuits and systems’, Proc. IEEE, 2017, 105, (11), pp. 20482065.
    26. 26)
      • 31. Ma, K., Liserre, M., Blaabjerg, F., et al: ‘Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 590602.
    27. 27)
      • 27. Asimakopoulos, P., Papastergiou, K., Thiringer, T., et al: ‘Heat sink design considerations in medium power electronic applications with long power cycles’. European Conf. on Power Electron. and Appl., Geneva, Switzerland, Sept 2015, pp. 19.
    28. 28)
      • 29. Novotny, D.W., Lipo, T.: ‘Vector control and dynamics of AC drives’ (Oxford University Press, New York, USA, 1996).
    29. 29)
      • 35. Incropera, F.P., DeWitt, D.P.: ‘Fundamentals of heat and mass transfer’ (John Wiley and Sons, Inc., New York City, New York, 1996, 4th edn.).
    30. 30)
      • 34. Lytron applications notes’. Available at https://www.lytron.com/Tools-and-Technical-Reference/Application-Notes, accessed 01 February 2019.
    31. 31)
      • 33. da Silva Dias, A., Candido, D.B., Almeida, A.P., et al: ‘VFD cooling methods for the extreme oil and gas installation conditions’. PCIC Europe, Antwerp, 2018, pp. 18.
    32. 32)
      • 25. Zhang, Y., Wang, H., Wang, Z., et al: ‘Impact of lifetime model selections on the reliability prediction of IGBT modules in modular multilevel converters’. IEEE Energy Convers. Congr. and Expos., Cincinnati, Ohio, USA, Oct 2017, pp. 42024207.
    33. 33)
      • 28. Hagiwara, M., Akagi, H.: ‘Control and experiment of pulsewidth-modulated modular multilevel converters’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 17371746.
    34. 34)
      • 7. Li, B., Zhou, S., Xu, D., et al: ‘A hybrid modular multilevel converter for medium-voltage variable-speed motor drives’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 46194630.
    35. 35)
      • 11. de Nazareth Ferreira, V., Cupertino, A.F., Pereira, H.A., et al: ‘Design and selection of high reliability converters for mission critical industrial applications: a rolling mill case study’, IEEE Trans. Ind. Appl., 2018, 54, (5), pp. 49384947.
    36. 36)
      • 13. Falck, J., Felgemacher, C., Rojko, A., et al: ‘Reliability of power electronic systems: an industry perspective’, IEEE Ind. Electron. Mag., 2018, 12, (2), pp. 2435.
    37. 37)
      • 23. Zhang, Y., Wang, H., Wang, Z., et al: ‘Simplified thermal modeling for IGBT modules with periodic power loss profiles in modular multilevel converters’, IEEE Trans. Ind. Electron., 2018, 66, pp. 11.
    38. 38)
      • 12. Wang, H., Liserre, M., Blaabjerg, F., et al: ‘Transitioning to physics-of-failure as a reliability driver in power electronics’, IEEE J. Emerg. Select. Top. Power Electron., 2014, 2, (1), pp. 97114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5897
Loading

Related content

content/journals/10.1049/iet-epa.2018.5897
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading