Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Iron loss and start-up ability of a 6/2 switched reluctance machine with different magnetic polarity of windings

This study presents an investigation on iron loss and start-up ability of a 1.5 kW output power with rated speed 5850 r/min 6/2 switched reluctance machine (SRM), which is used as a prime motor to directly drive centrifugal blower. Two winding connection types of the SRM are investigated, including the symmetrical magnetic topology (SyMT) and asymmetrical magnetic topology (ASyMT). The two types are proposed to settle poor self-start ability of the 6/2 SRM and high iron loss density of high-speed SRM. According to the simulation results, the SyMT has merit of self-start ability, i.e. no risk of start-up failure, whereas the ASyMT has advantage of low iron loss, i.e. low iron loss density on stator and rotor. Prototypes are manufactured to confirm and verify the predicted results and the test results prove the correctness of the analyses.

References

    1. 1)
      • 20. Ding, W., Lou, J.Y., Liu, L.: ‘Improved decoupled model of mutually coupled dual-channel SRM with consideration of magnetic saturation in dual-channel operation’, IET Electric. Power Appl., 2013, 7, (6), pp. 427440.
    2. 2)
      • 21. Li, G.J., Ojeda, J., Hlioui, S., et al: ‘Modification in rotor pole geometry of mutually coupled switched reluctance machine for torque ripple mitigating’, IEEE Trans. Magn., 2012, 48, (6), pp. 20252034.
    3. 3)
      • 7. Ye, J., Bilgin, B., Emadi, A.: ‘Elimination of mutual flux effect on rotor position estimation of switched reluctance motor drives considering magnetic saturation’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 532536.
    4. 4)
      • 25. Liu, G.W., Zhao, X.G., Zhang, F.G., et al: ‘Iron loss and air fraction loss for high speed permanent magnet claw pole machines’, Trans. China Electr.Tech. Soc., 2015, 30, (2), pp. 148154.
    5. 5)
      • 3. Fairall, E.W., Bilgin, B., Emadi, A.: ‘State-of-the-art high-speed switched reluctance machines’. Proc. Int. Conf. IEEE IEMDC, Coeur d'Alene, ID, USA, 2015, pp. 16211627.
    6. 6)
      • 2. Gan, C., Wu, J.H., Shen, M.J., et al: ‘Investigation of skewing effects on the vibration reduction of three-phase switched reluctance motors’, IEEE Trans. Magn., 2015, 51, (9), pp. 19.
    7. 7)
      • 6. Boglietti, A., Cavagnino, A., Tenconi, A., et al: ‘Key design aspects of electrical machines for high-speed spindle applications’. Proc. Int. Conf. IECON, Glendale, AZ, USA, 2010, pp. 17291734.
    8. 8)
      • 23. Xue, S.S., Feng, J.H., Guo, S.Y., et al: ‘Iron loss model for electrical machine fed by low switching frequency inverter’, IEEE Trans. Magn., 2017, 53, (11), Art. no. 2801004.
    9. 9)
      • 13. Radun, A., Richter, E.: ‘A detailed power inverter design for a 250 kW switched reluctance aircraft engine starter/generator’. Tech. Rep. 931388, SAE Technical Paper, Dayton, OH, USA, 1993.
    10. 10)
      • 5. Rahman, M., Chiba, A., Fukao, T.: ‘Super high speed electrical machines-summary’. Proc. Int. Conf. IEEE PES Gen. Meet., Denver, CO, USA, 2004, pp. 12721275.
    11. 11)
      • 14. Ferreira, C.A., Richter, E.: ‘Detailed design of a 250-kW switched reluctance starter/generator for an aircraft engine’. SAE Technical Paper 931389, SAE International, Warrendale, PA, USA, 1993.
    12. 12)
      • 11. Lee, D.H., Khoi, H.K.M., Ahn, J.W.: ‘Design and analysis of high speed 4/2 SRMs for an air-blower’. Proc. Int. Conf. IEEE Int. Symp. Industrial Electronics, Bari, Italy, 2010, pp. 12421246.
    13. 13)
      • 12. Zhou, Q., Liu, C.: ‘Maximization of starting torque of a three-phase 6/2 switched reluctance motor for super high speed drive’. Proc. Int. Conf. ICEM, Wuhan, China, October 2008, pp. 33853388.
    14. 14)
      • 8. Gan, C., Jin, N., Sun, Q., et al: ‘Multiport bidirectional SRM drives for solar-assisted hybrid electric bus powertrain with flexible driving and self-charging functions’, IEEE Trans. Power Electron., 2018, 33, (10), pp. 82318245.
    15. 15)
      • 9. Bilgin, B., Emadi, A., Krishnamurthy, M.: ‘Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 25642575.
    16. 16)
      • 22. Li, G.J., Zhu, Z.Q., Ma, X.Y., et al: ‘Comparative study of torque production in conventional and mutually coupled SRMs using frozen permeability’, IEEE Trans. Magn., 2016, 52, (6), Art. no. 8103509.
    17. 17)
      • 19. Cui, X.P., Sun, J.S., Gu, C.L.: ‘Optimal design of saturated switched reluctance machine for low torque ripple and high average torque’. Proc. Int. Conf. IEEE INTERMAG, Dublin, Ireland, April 2017.
    18. 18)
      • 18. Azar, Z., Zhu, Z.Q.: ‘Investigation of electromagnetic performance of salient-pole synchronous reluctance machines having different concentrated winding connections’. Proc. Int. Conf. IEEE IEMDC, Chicago, IL, USA, May 2013, pp. 359366.
    19. 19)
      • 24. Raminosoa, T., Blunier, B., Fodorean, D., et al: ‘Design and optimization of a switched reluctance motor driving a compressor for a PEM fuel-cell system for automotive applications’, IEEE Trans. Ind. Electron., 2010, 57, (9), pp. 29882997.
    20. 20)
      • 10. Gan, C., Wu, J.H., Hu, Y.H., et al: ‘New integrated multilevel converter for switched reluctance motor drives in plug-in hybrid electric vehicles with flexible energy conversion’, IEEE Trans. Power Electron., 2017, 32, (5), pp. 37543766.
    21. 21)
      • 15. Radun, A., Ferreira, C., Richter, E.: ‘Two-channel switched reluctance starter/generator results’, IEEE Trans. Ind. Appl., 1998, 34, (5), pp. 10261034.
    22. 22)
      • 17. Baartolo, J.B., Degano, M., Espina, J., et al: ‘Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 988997.
    23. 23)
      • 16. Gallegos-Lopez, G., Reiter, F., Rajashekara, K., et al: ‘300 kW switched reluctance generator for hybrid vehicle applications’. SAE Technical Paper 2002–01-1087, SAE International, Detroit, MI, USA, 2002.
    24. 24)
      • 4. Dang, J., Mayor, J.R., Semidey, S.A., et al: ‘Practical considerations for the design and construction of a high-speed SRM with a flux-bridge rotor’, IEEE Trans. Ind. Appl., 2015, 51, (6), pp. 45154520.
    25. 25)
      • 1. Tenconi, A., Vaschetto, S., Vigliani, A.: ‘Electrical machines for high-speed applications: design considerations and tradeoffs’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 30223029.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5867
Loading

Related content

content/journals/10.1049/iet-epa.2018.5867
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address