access icon free Boost multi-level NPC-fed VS large rated asynchronous pumped storage hydro-generating unit

The authors intent using a boost multi-level converter for the doubly fed induction machine (DFIM) used in variable-speed pumped storage plants (VS-PSP). Voltage-source converters connected on the rotor side of the machine control the active and reactive powers of the unit. The proposed boost neutral point clamped (NPC) converter topology provides a voltage output two times larger than a conventional three-level NPC (3L-NPC) with similar DC-link voltage and equal number of switches. Hence, it increases the speed variation of the unit, which improves the efficiency during generation and pumping modes. Moreover, it reduces the starting period of the unit at the pumping mode, which is significant during mode changeover time. Furthermore, it reduces switching and conduction losses in the converter. It also reduces the total harmonic distortion in the output current, as it provides five output voltage levels. These improvements show that the boost NPC converter topology is better among VS-PSP project authorities. In addition, the reliability of the proposed topology is investigated, where converter redundancy is a challenging issue in asynchronous VS-PSP units. The proposed boost NPC was compared with the conventional 3L-NPC system by examining a 250 MW DFIM hydro-generating unit.

Inspec keywords: reactive power control; pumped-storage power stations; machine control; voltage control; voltage-source convertors; switching convertors; rotors; asynchronous machines; harmonic distortion

Other keywords: boost neutral point clamped converter topology; mode changeover time; variable-speed pumped storage plants; power 250.0 MW; switching losses; conduction losses; rotor side; voltage-source converters; 250 MW DFIM hydro-generating unit; boost NPC converter topology; doubly fed induction machine; total harmonic distortion; output voltage levels; 3L-NPC system; boost multilevel NPC-fed VS large rated asynchronous pumped storage hydro-generating unit; DC-link voltage; pumping modes; boost multilevel converter; machine control; reactive powers; asynchronous VS-PSP units; active powers; converter redundancy; speed variation; three-level NPC

Subjects: Power electronics, supply and supervisory circuits; Power system control; Pumped storage stations and plants; Power and energy control; Voltage control; Asynchronous machines; Control of electric power systems; Power convertors and power supplies to apparatus

References

    1. 1)
      • 24. Rodríguez, J., Bernet, S., Wu, B., et al: ‘Multilevel voltage-source-converter topologies for industrial medium-voltage drives’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 29302945.
    2. 2)
      • 2. Chazarra, M., Pérez-Díaz, J.I., García-González, J.: ‘Optimal joint energy and secondary regulation reserve hourly scheduling of variable speed pumped storage hydropower plants’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 103115.
    3. 3)
      • 27. Yoshizawa, D., Mukunoki, M., Omote, K., et al: ‘A large capacity 3-level IEGT inverter’. IEEE Int. Power Electronics Conf. (IPEC-ECCE ASIA), Hiroshima, 2014, pp. 19501955.
    4. 4)
      • 16. Casey, T.: ‘Variable speed is key to world's biggest pumped hydro energy storage project, China's Fengning plant’, Clean Technica, News, 4th July 2018.
    5. 5)
      • 3. Hernandez, G.A.M., Mansoor, S.P., Jones, D.I.: ‘Modelling and controlling hydropower plants’ (Springer, London, England, 2012), pp. 110.
    6. 6)
      • 23. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    7. 7)
      • 25. Sandipa, S., Pandey, S.: ‘A case study on Tehri dam’. Academia Edu, May 2012, pp. 135.
    8. 8)
      • 18. Soeiro, T.B., Carballo, R., Moia, J., et al: ‘Three-phase five-level active-neutral-point-clamped converters for medium voltage applications’. Proc. Brazilian Power Electronics Conf., Gramado, Brazil, 2013, pp. 8591.
    9. 9)
      • 26. Carunaiselvane, C., Chelliah, T.R.: ‘Present trends and future prospects of asynchronous machines in renewable energy systems’, J. Renew. Sustain. Energy Rev., 2017, 74, pp. 10281041.
    10. 10)
      • 28. Toshiba.: ‘Press pack silicon n-channel IEGT – ST2100GXH24A’, Datasheet, September 2016, pp. 18.
    11. 11)
      • 22. Joseph, A., Desingu, K., Semwal, R.R., et al: ‘Dynamic performance of pumping mode off 250 MW variable speed hydro-generating unit subjected to power and control circuit faults’, IEEE Trans. Energy Convers., 2018, 33, (1), pp. 430441.
    12. 12)
      • 15. Swain, M.: ‘Pumped storage hydropower plant’, Electr. India, 2013, 11, pp. 127136.
    13. 13)
      • 4. Nagura, O., Higuchi, M., Tani, K., et al: ‘Hitachi's adjustable-speed pumped-storage system contributing to prevention of global warming’, Hitachi Rev., 2010, 59, (3), pp. 99105.
    14. 14)
      • 11. Kuwabara, T.S., Furuta, A., Kita, H., et al: ‘Design and dynamic response characteristics of 400 MW adjustable speed pumped storage unit for Ohkawachi power station’, IEEE Trans. Energy Convers., 1996, 11, (2), pp. 376384.
    15. 15)
      • 19. Wang, H., Kou, L., Liu, Y.F., et al: ‘A new six-switch five level active neutral point clamped inverter for PV applications’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 67006715.
    16. 16)
      • 14. Schmidt, E.E., Preiss, J., Zensch, A., et al: ‘Simulation of steady-state and transient operational behavior of variable-speed motor-generators of hydropower plants’. IEEE Int. Conf. Electric Machines & Drives, Canada, May 2011, pp. 607611.
    17. 17)
      • 21. Joseph, A., Selvaraj, R., Chelliah, T.R., et al: ‘Starting and braking of a large variable speed hydro-generating unit subjected to converter and sensor faults’, IEEE Trans. Ind. Appl., 2018, 54, (4), pp. 33723382.
    18. 18)
      • 6. Lung, J.K., Lu, Y., Hung, W.L., et al: ‘Modeling and dynamic simulations of doubly fed adjustable-speed pumped storage units’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 250258.
    19. 19)
      • 5. Joseph, A., Chelliah, T.R.: ‘A review of power electronic converters for variable speed pumped storage plants: configurations, operational challenges and future scopes’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (1), pp. 103119.
    20. 20)
      • 9. Friedli, T., Kolar, J., Rodriguez, J., et al: ‘Comparative evaluation of three-phase AC–AC matrix converter and voltage dc-link back-to-back converter systems’, IEEE Trans. Ind. Electron., 2012, 59, (12), pp. 44874510.
    21. 21)
      • 12. Pannatier, Y.K., Nicolet, B., Simond, C., et al: ‘Investigation of control strategies for variable speed pump turbine units by using a simplified model of the converters’, IEEE Trans. Ind. Electron., 2010, 57, (9), pp. 30393049.
    22. 22)
      • 20. Siwakoti, Y.P.: ‘A new six-switch five-level boost-active neutral point clamped inverter’. Proc. APEC Conf., San Antonio, TX, USA, 2018, pp. 24242430.
    23. 23)
      • 8. Simond, J.J., Sapin, A., Xuan, M.T., et al: ‘12-pulse LCI synchronous drive for a 20 MW compressor – modelling, simulation and measurements’. IEEE Conf. Industrial Applications, Hong Kong, October 2005, vol. 4, pp. 23022308.
    24. 24)
      • 17. Kieferndorf, F., Basler, M., Serpa, L.A., et al: ‘ANPC-5L technology applied to medium voltage variable speed drives applications’. Proc. SPEEDAM, Pisa, Italy, 2010, pp. 17181725.
    25. 25)
      • 1. Pérez-Diaz, I., Chazarra, M., González, J.G., et al: ‘Trends and challenges in the operation of pumped-storage hydropower plants’, J. Renew. Sustain. Energy Rev., 2015, 44, pp. 767784.
    26. 26)
      • 13. Koutnik, J.: ‘Frades II – variable speed pumped storage project and its benefit to the electrical grid’. Proc. Int. Conf. Renewable Energy, Orlando, January 2012, pp. 17.
    27. 27)
      • 29. Kashihara, Y., Itoh, J.-I.: ‘Power losses of multilevel converters in terms of the number of the output voltage levels’. IEEE Int. Power Electronics Conf. (IPEC-ECCE ASIA), Hiroshima, 2014, pp. 16.
    28. 28)
      • 10. Ghiani, E., Mocci, S., Celli, G., et al: ‘Increasing the flexible use of hydro pumping storage for maximizing the exploitation of RES in Sardinia’. IEEE Third Renewable Power Generation Conf., Naples, September 2014, pp. 16.
    29. 29)
      • 7. Lanese, J., Powers, A., Naeff, H.: ‘Selection of large variable speed pumps for the Domenigoni valley reservoir project’. Int. Conf. Hydropower, USA, 1995, vol. 2, pp. 19021912.
    30. 30)
      • 30. Joseph, A., Chelliah, T.R., Lee, S.S., et al: ‘Reliability of variable speed pumped-storage plant’, Electronics (Basel), 2018, 7, (10), pp. 114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5851
Loading

Related content

content/journals/10.1049/iet-epa.2018.5851
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading