access icon free Multiple sampling PSC-PWM with hierarchical control architecture for MMC-DSTATCOM

The modular multilevel converter (MMC) is attractive for medium- and high-power applications because of its high modularity, availability and power quality. In this study, a quadruple sampling phase-shifted-carrier pulse-width modulation (PSC-PWM) strategy based on hierarchical distributed control architecture for MMC in medium-voltage power distribution static synchronous compensator (DSTATCOM) application is presented. Compared to centralised control architecture, the multi-digital signal processors master–slave hierarchical control architecture can enhance the scalability of MMC-DSTATCOM and the sub-module (SM) number can expand without limitation. To take advantage of the proposed hierarchical architecture, the multiple sampling PSC-PWM technique is employed to improve the converter performance. The spectrum of the electromotive force of MMC with quadruple sampling is almost the same as that of natural sampling, which leads to fewer harmonics in reactive and harmonic current compensating. Besides, it also raises the sampling frequency so that the MMC-DSTATCOM can compensate harmonic at the low SM switching frequency. The effectivenesses of the proposed architecture and modulation method are verified by experimental results obtained from a 60 V/2 kVA downscaled prototype.

Inspec keywords: sampling methods; hierarchical systems; digital signal processing chips; PWM power convertors; electric potential; static VAr compensators; power supply quality; distributed control

Other keywords: harmonic current compensating; hierarchical distributed control architecture; medium-voltage power distribution static synchronous compensator application; multiple sampling PSC-PWM technique; sub-module number; apparent power 2.0 kVA; sampling frequency; MMC-DSTATCOM; high modularity; voltage 60.0 V; power quality; hierarchical architecture; quadruple sampling phase-shifted-carrier pulse-width modulation strategy; modulation method; multidigital signal processors master–slave hierarchical control architecture; natural sampling; modular multilevel converter; high-power applications; centralised control architecture

Subjects: Electrostatics; Other power apparatus and electric machines; Power supply quality and harmonics; Control of electric power systems; Power convertors and power supplies to apparatus; Multivariable control systems; Other topics in statistics; Other topics in statistics

References

    1. 1)
      • 17. Loh, P., Holmes, D., Lipo, T.: ‘Implementation and control of distributed PWM cascaded multilevel inverters with minimal harmonic distortion and common-mode voltage’, IEEE Trans. Power Electron., 2005, 20, (1), pp. 9099.
    2. 2)
      • 14. Debnath, S., Qin, J., Bahrani, B., et al: ‘Operation, control, and application of the modular multilevel converter: a review’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 3753.
    3. 3)
      • 8. Holmes, D., Lipo, T.: ‘Pulse width modulation for power converters – principles and practice’ (Wiley, Hoboken, NJ, USA, 2003).
    4. 4)
      • 4. Li, B., Zhou, S., Xu, D., et al: ‘A hybrid modular multilevel converter for medium-voltage variable-speed motor drives’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 46194930.
    5. 5)
      • 23. Hagiwara, M., Maeda, R., Akagi, H.: ‘Control and analysis of the modular multilevel cascaded converter based on double-star chopper-cells (MMCC-DSCC)’, IEEE Trans. Power Electron., 2011, 26, (6), pp. 16491658.
    6. 6)
      • 6. Cupertino, A.F., Farias, J.V.M., Pereira, H.A., et al: ‘Comparison of DSCC and SDBC modular multilevel converters for STATCOM application during negative sequence compensation’, IEEE Trans. Ind. Electron., 2019, 66, (3), pp. 23022312.
    7. 7)
      • 10. Ilves, K., Harnefors, L., Norrga, S., et al: ‘Analysis and operation of modular multilevel converters with phase-shifted carrier PWM’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 268283.
    8. 8)
      • 16. McGrath, B., Holmes, D., Kong, W.: ‘A decentralized controller architecture for a cascaded H-bridge multilevel converter’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 11691178.
    9. 9)
      • 28. Recommended Practice for Monitoring Electric Power Quality, IEEE Std. 1159, 2009.
    10. 10)
      • 22. Zhou, Y., Jiang, D., Hu, P., et al: ‘A prototype of modular multilevel converters’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 32673278.
    11. 11)
      • 12. Fujita, H.: ‘A single-phase active filter using an H-bridge PWM converter with a sampling frequency quadruple of the switching frequency’, IEEE Trans. Power Electron., 2009, 24, (4), pp. 934941.
    12. 12)
      • 5. Xu, C., Dai, K., Chen, X., et al: ‘Voltage droop control at point of common coupling with arm current and capacitor voltage analysis for distribution static synchronous compensator based on modular multilevel converter’, IET Power Electron., 2016, 9, (8), pp. 16431653.
    13. 13)
      • 1. Nami, A., Liang, J., Dijkhuizen, F., et al: ‘Modular multilevel converters for HVDC application: review on converter cells and functionalities’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 1836.
    14. 14)
      • 20. Yang, S., Tang, Y., Wang, P.: ‘Distributed control for a modular multilevel converter’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 55785591.
    15. 15)
      • 18. Park, Y., Yoo, J., Lee, S.: ‘Practical implementation of PWM synchronization and phase-shift method for cascaded H-bridge multilevel inverters based on a standard serial communication protocol’, IEEE Trans. Ind. Appl., 2008, 44, (2), pp. 634643.
    16. 16)
      • 3. Edpuganti, A., Rathore, A.: ‘Optimal pulse width modulation of medium-voltage modular multilevel converter’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 34353442.
    17. 17)
      • 9. Townsend, C., Summers, T., Betz, R.: ‘Impact of practical issues on the harmonic performance of phase-shifted modulation strategies for a cascaded H-bridge STATCOM’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 26552664.
    18. 18)
      • 21. Mathe, L., Burlacu, P., Teodorescu, R.: ‘Control of a modular multilevel converter with reduced internal data exchange’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 248257.
    19. 19)
      • 15. Parker, M., Ran, L., Finney, S.: ‘Distributed control of a fault-tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 509522.
    20. 20)
      • 24. Wu, P., Su, Y., Shie, J., et al: ‘A distributed control technique for the multilevel cascaded converter’, IEEE Trans. Ind. Appl., 2019, 55, (2), pp. 16491657.
    21. 21)
      • 7. Xu, C., Dai, K., Chen, X., et al: ‘Unbalanced PCC voltage regulation with positive- and negative-sequence compensation tactics for MMC-DSTATCOM’, IET Power Electron., 2016, 9, (15), pp. 28462858.
    22. 22)
      • 25. Fan, B., Li, Y., Wang, K., et al: ‘Hierarchical system design and control of an MMC-based power-electronic transformer’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 238247.
    23. 23)
      • 26. Shu, Z., Liu, M., Zhao, L., et al: ‘Predictive harmonic control and its optimal digital implementation for MMC-based active power filter’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 52445254.
    24. 24)
      • 13. Ota, J., Shibano, Y., Niimura, N., et al: ‘A phase-shifted-PWM D-STATCOM using a modular multilevel cascade converter (SSBC) – part I: modeling, analysis, and design of current control’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 279288.
    25. 25)
      • 19. Akagi, H.: ‘Classification, terminology, and application of the modular multilevel cascaded converter (MMCC)’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 31193130.
    26. 26)
      • 27. Chen, X., Dai, K., Xu, C., et al: ‘Harmonic compensation and resonance damping for SAPF with selective closed-loop regulation of terminal voltage’, IET Power Electron., 2017, 10, (6), pp. 619629.
    27. 27)
      • 2. Hu, J., Xu, K., Lin, L., et al: ‘Analysis and enhanced control of hybrid-MMC-based HVDC systems during asymmetrical DC voltage faults’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 13941403.
    28. 28)
      • 11. Walker, G.: ‘Digitally-implemented naturally sampled PWM suitable for multilevel converter control’, IEEE Trans. Power Electron., 2003, 18, (6), pp. 13221329.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5784
Loading

Related content

content/journals/10.1049/iet-epa.2018.5784
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading