© The Institution of Engineering and Technology
The interaction of spatial harmonics of electrical loading and the rotor anisotropy causes torque ripple in line start synchronous reluctance motor (a type of synchronous motor). A novel design technique for torque ripple reduction is presented in this study. Initially, synchronous reluctance motor filled with conducting material inside the flux barrier (called cage barrier) is optimised using a genetic algorithm (GA) technique. The optimised design is further verified using finite element analysis (FEA) and tested. To reduce the ripple content, the rotor has been introduced with an additional daxis cage. Six rotor structures with an additional cage have been designed and optimised using FEA. The numerical analysis results are compared for all rotor structures. The optimised rotor structures with and without daxis cage are fabricated and tested. Experimental results reveal that the fabricated rotor with an additional cage has reduced torque ripple and high efficiency. Finally, the acoustics test is carried out for both the fabricated structures and results are compared.
References


1)

1. Gamba, M., Pellegrino, G., Vagati, A., et al: ‘Linestart synchronous reluctance motors: design guidelines and testing via active inertia emulation’. IEEE Int. Conf. on Energy Conversion Congress and Exposition (ECCE), Montreal, Canada, 2015, pp. 648–655.

2)

2. Aswin Uvaraj, G., Lenin, N.C.: ‘Review on evolution of technology advancements and applications of line start synchronous machines’, IET Electr. Power Appl., 2018, 13, (1), pp. 1–16.

3)

3. Aswin Uvaraj, G., Lenin, N.C.: ‘Singlephase directonline synchronous motor for a specific application in comparison with an induction motor’, Int. Trans. Electric. Energ. Syst., 2018, e2809, pp. 1–23. .

4)

4. Yeswanth, J.L.K., Aswin Uvaraj, G., Lenin, N.C.: ‘A novel line start synchronous reluctance motor’. IEEE Int. Conf. on Magnetics (INTERMAG), Beijing, China, 2015, pp. 1–1.

5)

5. Mohanarajah, T., Rizk, J., Nagrial, M., et al: ‘Design of synchronous reluctance motors with improved power factor’. IEEE Int. Conf. on Compatibility, Power Electronics and Power Engineering (CPEPOWERENG), Cadiz, Spain, 2017, pp. 340–345.

6)

6. Fratta, A., Troglia, G.P., Vagati, A., et al: ‘Ripple evaluation of highperformance synchronous reluctance machines’, IEEE Ind. Appl. Mag., 1995, 1, (4), pp. 1–16.

7)

7. Vagati, A., Pastorelli, M., Franceschini, G., et al: ‘Design of lowtorqueripple synchronous reluctance motors’, IEEE Trans. Ind. Appl., 1998, 34, (4), pp. 758–765.

8)

8. Bomela, X.L., Kamper, J.: ‘Effect of stator chording and rotor skewing on performance of reluctance synchronous machines’, IEEE Trans. Ind. Appl., 2002, 38, (1), pp. 91–100.

9)

9. Moghaddam, R., Magnussen, F., Sadarangani, C.: ‘Novel rotor design optimization of synchronous reluctance machine for low torque ripple’. XXth Int. Conf. on Electrical Machines, Marseille, France, 2012, pp. 720–724.

10)

10. Taghavi, S., Pragasen, P.: ‘A novel grain oriented lamination rotor core assembly for a synchronous reluctance traction motor with a reduced torque ripple algorithm’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 3729–3738.

11)

11. Rouhani, R., Abdollahi, S.E., Gholamian, S.A.: ‘Torque ripple reduction of a synchronous reluctance motor for electric vehicle applications’. 9th Annual Power Electronics, Drives Systems and Technologies Conf. (PEDSTC), Tehran, Iran, 2018, pp. 386–391.

12)

12. Bianchi, N., Michele, D., Emanuele, F.: ‘Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior pm motors’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 187–195.

13)

13. Wang, K., Zhu, Z.Q., Ombach, G., et al: ‘Torque ripple reduction of synchronous reluctance machines: optimal slot/pole and fluxbarrier layer number combinations’, COMPEL: The Inter. J. Comput. Math. Electr. Electron. Eng., 2015, 34, (1), pp. 3–17.

14)

14. Staton, D.A., Miller, T.J.E., Wood, S.E.: ‘Maximising the saliency ratio of the synchronous reluctance motor’, IEE Proc. B – Electr. Power Appl., 1993, 140, (4), pp. 249–259.

15)

15. Santos, J.A., Andrade, D.A., Viajante, G.P., et al: ‘Mathematical modeling and computer analysis synchronous reluctance motor’. IEEE 13th Brazilian Power Electronics Conf. and 1st Southern Power Electronics Conf. (COBEP/SPEC), Fortaleza, Brazil, 2016, pp. 1–5.

16)

16. Reza, R.M.: ‘Synchronous reluctance machine (SynRM) design’. , Royal Institute of Technology Stockholm, 2007.

17)

17. Ashkezari, J.D., Khajeroshanaee, H., Niasati, M., et al: ‘Optimum design and operation analysis of permanent magnetassisted synchronous reluctance motor’, Turkish J. Electr. Eng. Comput. Sci., 2017, 25, pp. 1894–1907.

18)

18. Boroujeni, S.T., Haghparast, M., Bianchi, N.: ‘Optimization of flux barriers of linestart synchronous reluctance motors for transient and steadystate operation’, Electr. Power Comput. Syst., 2015, 43, (5), pp. 3–17.

19)

19. Faiz, J., Sharifian, M.B.B.: ‘Comparison of two optimization techniques for the design of a threephase induction motor using three different objective functions’, Eur. Trans. Electr. Power, 1995, 5, (3), pp. 199–205.

20)

20. Mircea, R., Florin, J., Levente, C., et al: ‘Synchronous reluctance machine geometry optimisation through a genetic algorithm based technique’, IET Electr. Power Appl., 2018, 12, (3), pp. 431–438.

21)

21. Pellegrino, G., Francesco, C., Chris, G.: ‘Automatic design of synchronous reluctance motors focusing on barrier shape optimization’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 1465–1474.

22)

22. Degano, M., DiNardo, M., Galea, M., et al: ‘Global design optimization strategy of a synchronous reluctance machine for light electric vehicles’. 8th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD), Glasgow, UK, 2016, pp. 1–5.

23)

23. Degano, M., Mahmoud, H., Bianchi, N., et al: ‘Synchronous reluctance machine analytical model optimization and validation through finite element analysis’. XXII Int. Conf. on Electrical Machines (ICEM), Lausanne, Switzerland, 2016, pp. 585–591.

24)

24. KiChan, K., Joon Seon, A., Sung Hong, W., et al: ‘A study on the optimal design of SynRM for the high torque and power factor’, IEEE Trans. Magn., 2007, 43, (6), pp. 2543–2545.

25)

25. Tampio, J., Kansakangas, T., Suuriniemi, S.: ‘Analysis of directonlinesynchronous reluctance machine startup using a magnetic field decomposition’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 1852–1859.

26)

26. Verma, S.P.: ‘Noise and vibrations of electrical machines and drives; their production and means of reduction’. Proc. of Int. Conf. on Power Electronics Drives and Energy Systems for Industrial Growth, New Delhi, India, 2002, pp. 1031–1037.

27)

27. Kobayashi, T., Tajima, F., Ito, M.: ‘Effects of slot combination on acoustic noise from induction motors’, IEEE Trans. Magn., 1997, 33, (2), pp. 2101–2104.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietepa.2018.5783
Related content
content/journals/10.1049/ietepa.2018.5783
pub_keyword,iet_inspecKeyword,pub_concept
6
6