http://iet.metastore.ingenta.com
1887

Fast computation of electric field and capacitance matrix of transformer windings with boundary element method and adaptive cross approximation

Fast computation of electric field and capacitance matrix of transformer windings with boundary element method and adaptive cross approximation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Accurate and fast computation of electric fields is of great interest in transformer design. This article presents a fast and precise method of computation of electric field of transformer windings based on the boundary element method and integral equations approach. Additionally, computation of the capacitance matrix of a transformer geometry is presented. Proposed methodology depends on the knowledge of the transformer geometry. Improvement in computational costs and memory requirements of the developed electrostatic solver is achieved by implementation of the adaptive cross approximation algorithm. Results are benchmarked against commercial software based on the finite element method and applicability of the developed solver is proven.

References

    1. 1)
      • 1. Liu, X.M., Cao, Y.D., Wang, E.Z., et al: ‘3-d electric field analysis of high voltage SF6 current transformer using charge simulation method’. Icems'2001 Proc. Fifth Int. Conf. Electr. Mach. Syst. Vols I Ii, Shenyang, China, 2001, pp. 269272.
    2. 2)
      • 2. Singer, H., Steinbigler, H., Weiss, P.: ‘A charge simulation method for the calculation of high voltage fields’, IEEE Trans. Power Appar. Syst., 1974, PAS-93, (5), pp. 16601668.
    3. 3)
      • 3. Makuc, D., Ikanovic, J., Lenasi, K.: ‘Electric field analysis of the insulation structure of power transformer’ (Springer, The Netherlands, 2005), pp. 155160.
    4. 4)
      • 4. Khaligh, A., Vakilian, M.: ‘Power transformers internal insulation design improvements through finite element methods’. IEEE Region 10 Annual Int. Conf., Proc./TENCON, Chiang Mai, Thailand, 2004.
    5. 5)
      • 5. Gómez, P., González, E., Espino-Cortés, F.P.: ‘Analysis of the electric field distribution on insulating supports of dry-type transformers under high temperature’, IET Electr. Power Appl., 2013, 7, (5), pp. 331337.
    6. 6)
      • 6. Bamji, S.S., Bulinski, A.T., Prasad, K.M.: ‘Electric field calculations with the boundary element method’, IEEE Trans. Electr. Insul., 1993, 28, (3), pp. 420424.
    7. 7)
      • 7. Muhkopadhyay, S., Majumdar, N.: ‘Computation of 3D MEMS electrostatics using a nearly exact BEM solver’, Eng. Anal. Bound. Elem., 2006, 30, (8), pp. 687696.
    8. 8)
      • 8. Drandić, A., Trkulja, B.: ‘Computation of electric field inside substations with boundary element methods and adaptive cross approximation’, Eng. Anal. Bound. Elem., 2018, 91, pp. 16.
    9. 9)
      • 9. Štih, Ž., Trkulja, B.: ‘Application of bicubic splines in the boundary element method’, Eng. Anal. Bound. Elem., 2009, 33, (6), pp. 896900.
    10. 10)
      • 10. Azzouz, Z., Foggia, A., Pierrat, L., et al: ‘3D finite element computation of the high frequency parameters of power transformer windings’, IEEE Trans. Magn., 1993, 29, (2), pp. 14071410.
    11. 11)
      • 11. Smajic, J., Steinmetz, T., Rüegg, M., et al: ‘Simulation and measurement of lightning-impulse voltage distributions over transformer windings’, IEEE Trans. Magn., 2014, 50, (2), pp. 553556.
    12. 12)
      • 12. Zupan, T., Trkulja, B., Obrist, R., et al: ‘Transformer windings’ RLC parameters calculation and lightning impulse voltage distribution simulation’, IEEE Trans. Magn., 2016, 52, (3), pp. 14.
    13. 13)
      • 13. Trkulja, B., Drandić, A., Milardić, V., et al: ‘Lightning impulse voltage distribution over voltage transformer windings — simulation and measurement’, Electr. Power Syst. Res., 2017, 147, pp. 185191.
    14. 14)
      • 14. Trkulja, B., Drandić, A., Štih, Ž.: ‘Development of 3D BEM code for computation of a transformer winding's capacitance matrix’. Procedia Engineering, 2017, 202, pp. 327332.
    15. 15)
      • 15. Zhao, K., Vouvakis, M.N., Lee, J.F.: ‘The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems’, IEEE Trans. Electromagn. Compat., 2005, 47, (4), pp. 763773.
    16. 16)
      • 16. Buchau, A., Huber, C.J., Rieger, W., et al: ‘Fast BEM computations with the adaptive multilevel fast multipole method’, IEEE Trans. Magn., 2000, 36, (4 PART 1), pp. 680684.
    17. 17)
      • 17. Buchau, A., Rucker, W.M., Rain, O., et al: ‘Comparison between different approaches for fast and efficient 3-D BEM computations’, IEEE Trans. Magn., 2003, 39, (3), pp. 11071110.
    18. 18)
      • 18. Brunner, D., Junge, M., Rapp, P., et al: ‘Comparison of the fast multipole method with hierarchical matrices for the Helmholtz-BEM’, C. - Comput. Model. Eng. Sci., 2010, 58, (2), pp. 131158.
    19. 19)
      • 19. Bebendorf, M., Rjasanow, S.: ‘Adaptive low-rank approximation of collocation matrices’, Comput. (Vienna/New York), 2003, 70, (1), pp. 124.
    20. 20)
      • 20. Ostrowski, J., Andjelić, Z., Bebendorf, M., et al: ‘Fast BEM-solution of Laplace problems with ℋ-matrices and ACA’, IEEE Trans. Magn.’, 2006, pp. 627630.
    21. 21)
      • 21. Kurz, S., Rain, O., Rjasanow, S.: ‘Application of the adaptive cross approximation technique for the coupled BE-FE solution of symmetric electromagnetic problems’, Comput. Mech., 2003, pp. 423429.
    22. 22)
      • 22. Wei, X., Chen, B., Chen, S., et al: ‘An ACA-SBM for some 2D steady-state heat conduction problems’, Eng. Anal. Bound. Elem., 2016, 71, pp. 101111.
    23. 23)
      • 23. Tamayo, J.M., Heldring, A., Rius, J.M.: ‘Multilevel adaptive cross approximation (MLACA)’, IEEE Trans. Antennas Propag., 2011, 59, (12), pp. 46004608.
    24. 24)
      • 24. Jiang, Z., Chen, H., Wan, T., et al: ‘Application of multilevel directional adaptive cross approximation technique for electromagnetic problems’, Eng. Anal. Bound. Elem., 2017, 85, pp. 111115.
    25. 25)
      • 25. Bazdar, M.B., Djordjevic, A.R., Harrington, R.F., et al: ‘Evaluation of quasi-static matrix parameters for multiconductor transmission lines using Galerkin's method’, IEEE Trans. Microw. Theory Tech., 1994, 42, (7), pp. 12231228.
    26. 26)
      • 26. Saad, Y., Schultz, M.H.: ‘GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems’, SIAM J. Sci. Stat. Comput., 1986, 7, (3), pp. 856869.
    27. 27)
      • 27. Infolytica: ‘Elecnet v7: 2D/3D electric field simulation software’ (no date).
    28. 28)
      • 28. MATLAB: ‘MATLAB’, 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5680
Loading

Related content

content/journals/10.1049/iet-epa.2018.5680
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address