access icon free Optimal design of a compact passive magnetic bearing based on dynamic modelling

Passive magnetic bearings offer significant advantages relative to common active magnetic bearings, such as simple, robust, and efficient structure. Permanent magnet (PM) passive magnetic bearings are composed of opposing magnet rings on rotor and stator. Although their stiffness has been improved using alternating or Halbach magnetisations in many previous studies, they still suffer from lack of damping force. In this study, the optimal design is focused on a combination of PM bearing and eddy current damper by adding a conductive layer along the magnets of the stator or rotor. This will moderate the magnetic material consumptions; thereby, the cost and overall size of the bearing are reduced. A complete analytical method is performed to calculate the stiffness and axial, radial, and rotating damping coefficients. The accuracy of the analytical model is estimated quantitatively using 3D finite element method simulations. Moreover, all of the parameters are normalised and optimised for maximum stiffness and damping.

Inspec keywords: magnetic bearings; cost reduction; machine bearings; permanent magnets; finite element analysis; elastic constants; eddy currents; magnetisation; damping; rotors; design engineering

Other keywords: magnetic material consumptions; 3D finite element method simulations; conductive layer; stator; magnet rings; damping coefficients; rotor; passive magnetic bearing design; permanent magnet; active magnetic bearings; Halbach magnetisations; stiffness; eddy current damper; cost reduction; dynamic modelling

Subjects: Other magnetic material applications and devices; Numerical analysis; Finite element analysis; Vibrations and shock waves (mechanical engineering); Elasticity (mechanical engineering); Mechanical components; Permanent magnets

References

    1. 1)
      • 15. Filatov, A.V., Maslen, E.H.: ‘Passive magnetic bearing for flywheel energy storage systems’, IEEE Trans. Magn., 2001, 37, (6), pp. 39133924.
    2. 2)
      • 6. Marth, E., Jungmayr, G., Amrhein, W.: ‘A 2-D-based analytical method for calculating permanent magnetic ring bearings with arbitrary magnetisation and its application to optimal bearing design’, IEEE Trans. Magn, 2014, 50, (5), pp. 18.
    3. 3)
      • 10. Marth, E., Jungmayr, G., Panholzer, M., et al: ‘Optimisation of stiffness per magnet volume ratio of discrete and continuous Halbach type permanent magnetic bearings’. Proc. 13th ISMB, USA, Arlington, 2012.
    4. 4)
      • 32. Paudel, N., Paul, S., Bird, J.Z.: ‘General 2-D transient eddy current force equations for a magnetic source moving above a conductive plate’, Prog Electromagn Res B, 2012, 43, pp. 255277.
    5. 5)
      • 16. Detoni, J.G., Impinna, F., Tonoli, A., et al: ‘Unified modelling of passive homopolar and heteropolar electrodynamic bearings’, J. Sound Vib., 2012, 331, (19), pp. 42194232.
    6. 6)
      • 25. Detoni, J.G., Cui, Q., Amati, N., et al: ‘Modelling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications’, J. Sound Vib., 2016, 373, pp. 5265.
    7. 7)
      • 14. Filatov, A.V.: ‘Null-E magnetic bearings’. PhD thesis, University of Virginia, 2002.
    8. 8)
      • 5. Yonnet, J.P.: ‘Analytical calculations of magnetic bearings’. Proc. 5th Int. Workshop on rare Earth-Cobalt Permanent Magnets and their Applications, Roanoke, Virginia, June 1981, pp. 199216.
    9. 9)
      • 19. Kligerman, Y., Grushkevich, A., Darlow, M.S.: ‘Analytical and experimental evaluation of instability in rotordynamic system with electromagnetic eddy-current damper’, J. Vib. Acoust., 1998, 120, (1), pp. 272278.
    10. 10)
      • 33. Theodoulidis, T.: ‘Developments in calculating the transient eddy current response from a conductive plate’, IEEE Trans. Magn., 2008, 44, (7), pp. 18941896.
    11. 11)
      • 8. Moser, R., Sandtner, J., Bleuler, H.: ‘Optimisation of repulsive passive magnetic bearings’, IEEE Trans. Magn., 2006, 42, (8), pp. 20382042.
    12. 12)
      • 11. Jungmayr, G., Marth, E., Amrhein, W., et al: ‘Analytical stiffness calculation for permanent magnetic bearings with soft magnetic materials’, IEEE Trans. Magn., 2014, 50, (8), pp. 18.
    13. 13)
      • 21. Kluyskens, V., Dehez, B.: ‘Dynamical electromechanical model for magnetic bearings subject to eddy currents’, IEEE Trans. Magn., 2013, 49, (4), pp. 14441452.
    14. 14)
      • 27. Fang, J., Le, Y., Sun, J., et al: ‘Analysis and design of passive magnetic bearing and damping system for high-speed compressor’, IEEE Trans. Magn, 2012, 48, (9), pp. 25282537.
    15. 15)
      • 3. Ravaud, R., Lemarquand, G., Lemarquand, V.: ‘Force and stiffness of passive magnetic bearings using permanent magnets. Part 2: radial magnetisation’, IEEE Trans. Magn., 2009, 45, (9), pp. 33343342.
    16. 16)
      • 23. Amati, N., De Lepine, X., Tonoli, A.: ‘Modelling of electrodynamic bearings’, J. Vib. Acoust., 2008, 130, (6), pp. 061007.
    17. 17)
      • 7. Yonnet, J.P., Lemarquand, G., Hemmerlin, S., et al: ‘Stacked structures of passive magnetic bearings’, Appl J. Phys., 1991, 70, (10), pp. 66336635.
    18. 18)
      • 24. Tonoli, A., Amati, N., Impinna, F., et al: ‘A solution for the stabilisation of electro-dynamic bearings: modelling and experimental validation’, J. Vib. Acoust., 2011, 133, (2), pp. 021004.
    19. 19)
      • 12. Earnshaw, S.: ‘On the nature of the molecular forces which regulate the constitution of the luminiferous ether’, Trans. Cambridge Phil. Soc., 1848, 7, pp. 97112.
    20. 20)
      • 29. Genta, G.: ‘Dynamics of rotating systems’ (Springer Science & Business Media, New York, 2007).
    21. 21)
      • 20. Kluyskens, V., Dehez, B., Ahmed, H.B.: ‘Dynamical electromechanical model for magnetic bearings’, IEEE Trans. Magn., 2007, 43, (7), pp. 32873292.
    22. 22)
      • 4. Ravaud, R., Lemarquand, G., Lemarquand, V., et al: ‘Analytical calculation of the magnetic field created by permanent-magnet rings’, IEEE Trans. Magn., 2008, 44, (8), pp. 19821989.
    23. 23)
      • 13. Basore, P.A.: ‘Passive stabilisation on flywheel magnetic bearings’. M.Sc. Thesis, Massachusetts Institute of Technology (USA), 1980.
    24. 24)
      • 30. Cheng, D.K.: ‘Field and wave electromagnetics’ (Addison-Wesley, Reading, MA, 1983).
    25. 25)
      • 31. Knoepfel, H.E.: ‘Magnetic fields: a comprehensive theoretical treatise for practical use’ (Wiley-VCH, New York, 2000).
    26. 26)
      • 22. Van Verdeghem, J., Dumont, C., Kluyskens, V., et al: ‘Linear state-space representation of the axial dynamics of electrodynamic thrust bearings’, IEEE Trans. Magn., 2016, 52, (10), pp. 112.
    27. 27)
      • 2. Ravaud, R., Lemarquand, G., Lemarquand, V.: ‘Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: axial magnetisation’, IEEE Trans. Magn., 2009, 45, (7), pp. 29963002.
    28. 28)
      • 18. Le, Y., Fang, J., Sun, J.: ‘Design of a Halbach array permanent magnet damping system for high speed compressor with large thrust load’, IEEE Trans. Magn, 2014, 51, (1), pp. 25282536.
    29. 29)
      • 9. Safaeian, R., Heydari, H.: ‘Comprehensive comparison of different structures of passive permanent magnet bearings’, IET Electr Power Appl., 2018, 12, (2), pp. 179187, 2.
    30. 30)
      • 17. Filatov, A., Hawkins, L., Krishnan, V., et al: ‘Active axial electromagnetic damper’. Proc. 11th ISMB, 2000 Electromagnetic Damper, Japan, Nara, 2000.
    31. 31)
      • 28. Cheah, S.K., Sodano, H.A.: ‘Novel eddy current damping mechanism for passive magnetic bearings’, J. Vib. Control, 2008, 14, (11), pp. 17491766.
    32. 32)
      • 26. Lembke, T.A.: ‘Design and analysis of a novel low loss homopolar electrodynamic bearing’. PhD Thesis. KTH, 2005.
    33. 33)
      • 1. Schweitzer, G., Maslen, H.: ‘Magnetic bearings, theory, design and application to rotating machinery’ (Springer, Germany, Berlin, 2009).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5674
Loading

Related content

content/journals/10.1049/iet-epa.2018.5674
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading