Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Investigation of the unbalanced magnetic pull damping effect in squirrel cage induction machines

The unbalanced magnetic pull (UMP) in electrical machines is due to the existence of additional magnetic flux waves. When squirrel cage induction machine (SCIM) running below its rated slip, most of the additional magnetic flux waves can be damped by the counteracting flux waves produced by its parallel-connected rotor bars. Here, this UMP damping effect is comprehensively discussed by comparing the UMP and the air-gap flux of SCIMs and wound rotor induction machines. Subsequently, a UMP damping coefficient is proposed to be included in the conventional UMP analytical model, in which the damping of UMP caused by the counteracting flux waves can be taken into account. Lastly, the UMP of SCIM at different excitation frequencies and rotor resistance are investigated to further verify the UMP damping effect.

References

    1. 1)
      • 27. Preston, T.W., Reece, A.B.J., Sangha, P.S.: ‘Induction motor analysis by time-stepping techniques’, IEEE Trans. Magn., 1988, 24, (1), pp. 471474.
    2. 2)
      • 29. Tsukerman, I.: ‘Accurate computation of ‘ripple solutions’ on moving finite element meshes’, IEEE Trans. Magn., 1995, 31, (3), pp. 14721475.
    3. 3)
      • 28. Howe, D., Zhu, Z.Q.: ‘The influence of finite element discretisation on the prediction of cogging torque in permanent magnet excited motors’, IEEE Trans. Magn., 1992, 28, (2), pp. 10801083.
    4. 4)
      • 8. Tavner, P.J.: ‘Review of condition monitoring of rotating electrical machines’, IET Electr. Power Appl., 2018, 2, (4), pp. 215247.
    5. 5)
      • 5. Cameron, J.R., Thomson, W.T., Dow, A.B.: ‘Vibration and current monitoring for detecting airgap eccentricity in large induction motors’, IEE Proc. B, Electr. Power Appl., 1986, 133, (3), pp. 155163.
    6. 6)
      • 11. Frohne, H.: ‘Einseitigen magnetischen Zugkrafte in Drehstrommaschinen’, ETZ-A, 1962, 83, (10), pp. 299303.
    7. 7)
      • 2. Faiz, J., Ebrahimi, B.M., Sharifian, M.B.B.: ‘Different faults and their diagnosis techniques in three-phase squirrel-cage induction motors – a review’, Electromagnetics, 2006, 26, (7), pp. 543569.
    8. 8)
      • 15. Bradford, M.: ‘Unbalanced magnetic pull in a 6-pole induction motor’, Proc. Inst. Eng., 1968, 115, (11), pp. 16191627.
    9. 9)
      • 6. Nandi, S., Toliyat, H.A., Li, X.: ‘Condition monitoring and fault diagnosis of electrical motors – a review’, IEEE Trans. Energy Convers., 2005, 20, (4), pp. 719729.
    10. 10)
      • 4. Shek, J.K.H., Dorrell, D.G., Hsieh, M., et al: ‘Reducing bearing wear in induction generators for wave and tidal current energy devices’. IET Conf. on Renewable Power Generation, Edinburgh, 2011, pp. 16.
    11. 11)
      • 9. Dorrell, D.G., Shek, J., Hsieh, M., et al: ‘Unbalanced magnetic pull in cage induction machines for fixed-speed renewable energy generators’, IEEE Trans. Magn., 2011, 47, (10), pp. 40964099.
    12. 12)
      • 16. Burakov, A., Arkkio, A.: ‘Comparison of the unbalanced magnetic pull mitigation by the parallel paths in the stator and rotor windings’, IEEE Trans. Magn., 2007, 43, (12), pp. 40834088.
    13. 13)
      • 12. Stavrou, A., Penman, J.: ‘Modelling dynamic eccentricity in smooth air-gap induction machines’. IEMDC 2001. IEEE Int. Electric Machines and Drives Conf., Cambridge, MA, USA, 2001, pp. 864871.
    14. 14)
      • 23. Dorrell, D.G.: ‘Sources and characteristics of unbalanced magnetic pull in 3-phase cage induction motors with axial-varying rotor eccentricity’. IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009, pp. 240247.
    15. 15)
      • 21. Dorrell, D.G., Hsieh, M.F.: ‘Calculation of radial forces in cage induction motors at start – the effect of rotor differential’, IEEE Trans. Magn., 2010, 46, (8), pp. 30293032.
    16. 16)
      • 18. Wallin, M., Ranlof, M., Lundin, U.: ‘Reduction of unbalanced magnetic pull in synchronous machines due to parallel circuits’, IEEE Trans. Magn., 2011, 47, (12), pp. 48274833.
    17. 17)
      • 3. Thomson, W.T., Barbour, A.: ‘On-line current monitoring and application of a finite element method to predict the level of static airgap eccentricity in three-phase induction motors’, IEEE Trans. Energy Convers., 1998, 13, (4), pp. 347357.
    18. 18)
      • 22. Nandi, S.: ‘Modeling of induction machines including stator and rotor slot effects’, IEEE Trans. Ind. Appl., 2004, 40, (4), pp. 10581065.
    19. 19)
      • 10. Salah, A., Guo, Y., Dorrell, D.: ‘Monitoring and damping unbalanced magnetic pull due to eccentricity fault in induction machines: a review’. 20th Int. Conf. on Electrical Machines and Systems, Sydney, NSW, 2017, pp. 16.
    20. 20)
      • 17. Dorrell, D.G., Smith, A.C.: ‘Calculation of UMP in induction motors with series or parallel winding connections’, IEEE Trans. Energy Convers., 1994, 9, (2), pp. 304310.
    21. 21)
      • 13. Dorrell, D.G., Shek, J.K.H., Hsieh, M.: ‘The development of an indexing method for the comparison of unbalanced magnetic pull in electrical machines’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 145153.
    22. 22)
      • 24. Guo, D., Chu, F., Chen, D.: ‘The unbalanced magnetic pull and its effects on vibration in a three phase generator with eccentric’, J. Sound Vib., 2002, 254, (2), pp. 297312.
    23. 23)
      • 26. Chuan, H., Shek, J.K.H.: ‘Reducing unbalanced magnetic pull of an induction machine through active control’. IET Int. Conf. on Power Electronics, Machines and Drives, Glasgow, 2016, pp. 16.
    24. 24)
      • 1. Finley, W.R., Hodowanec, M.M., Holter, W.G.: ‘An analytical approach to solving motor vibration problems’. Industry Applications Society Annual Petroleum and Chemical Technical Conf., San Diego, CA, USA, 1999, pp. 217232.
    25. 25)
      • 7. Faiz, J., Ardekanei, I.T., Toliyat, H.A.: ‘An evaluation of inductances of a squirrel-cage induction motor under mixed eccentric conditions’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 252258.
    26. 26)
      • 30. Munoz-Garcia, A., Lipo, T.A., Novotny, D.W.: ‘A new induction motor V/f control method capable of high-performance regulation at low speeds’, IEEE Trans. Ind. Appl., 1998, 34, (4), pp. 813821.
    27. 27)
      • 19. Frauman, P., Burakov, A., Arkkio, A.: ‘Effects of the slot harmonics on the unbalanced magnetic pull in an induction motor with an eccentric rotor’, IEEE Trans. Magn., 2007, 43, (8), pp. 34413444.
    28. 28)
      • 25. Smith, A.C., Dorrell, D.G.: ‘Calculation and measurement of unbalanced magnetic pull in cage induction motors with eccentric rotors. I. Analytical model’, IEE Proc. Electr. Power Appl., 1996, 143, (3), pp. 193201.
    29. 29)
      • 20. Chuan, H., Shek, J.K.H.: ‘Calculation of unbalanced magnetic pull in induction machines through empirical method’, IET Electr. Power Appl., 2018, 12, (9), pp. 12331239.
    30. 30)
      • 14. Dorrell, D.G., Shek, J.K.H., Mueller, M.A., et al: ‘Damper windings in induction machines for reduction of unbalanced magnetic pull and bearing wear’, IEEE Trans. Ind. Appl., 2013, 49, (5), pp. 22062216.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5647
Loading

Related content

content/journals/10.1049/iet-epa.2018.5647
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address