access icon free Rotor design for line start AF-PMSM

This study presents design and performance analyses for a new line start axial flux permanent magnet synchronous motors (AF-PMSMs). The innovative part of this study is that AF-PMSM can start directly from the line and operate with high efficiency and power factor after synchronisation. Prototype manufacturing was carried out after completing the analytical and electromagnetic designs for the targeted motor. The synchronisation capacity, power capacity, power–speed characteristic, power-efficiency relationship along with the total harmonic distortion and back-emf waveform of the induced voltage have been examined for the prototype motor. Simulation studies have been verified experimentally. The results obtained were compared with an induction motor with the same power. It was observed as a result of the work carried out and a line start AF-PMSM is obtained that is 4–10% more efficient in comparison with an induction motor having the same power.

Inspec keywords: rotors; electric potential; harmonic distortion; permanent magnet motors; synchronous motors

Other keywords: prototype motor; analytical designs; electromagnetic designs; rotor design; synchronisation capacity; power factor; line start axial flux permanent magnet synchronous motors; performance analyses; power-efficiency relationship; power capacity; targeted motor; power–speed characteristic; simulation studies; line start AF-PMSM; induction motor

Subjects: Synchronous machines

References

    1. 1)
      • 24. Parviainen, A.: ‘Design of axial-flux permanent-magnet low-speed machines and performance comparison between radial-flux and axial-flux machines’. PhD thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2005.
    2. 2)
      • 28. Mahmoudi, A., Kahourzade, S., Rahim, N.A., et al: ‘Slot-less torus solid-rotor-ringed line-start axial-flux permanent-magnet motor’, Progress. Electromagn. Res., 2012, 131, pp. 331355.
    3. 3)
      • 11. Hakala, H.: ‘Integration of motor and hoisting machine changes the elevator business’. Int. Conf. on Electrical Machines, Espoo, Finland, 2000, vol. 3, pp. 12421245.
    4. 4)
      • 7. Daldaban, F., Çetin, E.: ‘Prototyping of axial flux permanent magnet motors’. 3rd Int. Symp. on Innovative Technologies in Engineering and Science (ISITES2015), Valencia, Spain, June 2015, pp. 17.
    5. 5)
      • 1. Benhaddadi, M., Landry, F., Houde, R., et al: ‘Energy efficiency electric premium motor-driven systems’. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, June 2012, pp. 12351239.
    6. 6)
      • 18. Zhao, H., Li, L., Zheng, P., et al: ‘Research on the axial-radial flux compound-structure permanent-magnet synchronous machine (CSPMSM) used for HEV’. Int. Conf. on Electrical Machines and Systems (ICEMS) 2008, Hankou Wuhan, China, October 2008, pp. 32503253.
    7. 7)
      • 4. Akar, M., Eker, M.: ‘Demagnetization fault diagnosis in permanent magnet synchronous motors’, Prz. Elektrotech., 2013, 89, (2a/2013), pp. 229233.
    8. 8)
      • 8. Hüner, E., Aküner, M.C.: ‘Axial-flux synchronous machines compared with different stator structures for use in working’, Prz. Elektrotech., 2012, 11, (11a), pp. 174177.
    9. 9)
      • 25. Sahin, F.: ‘Design and development of a high-speed axial-flux permanent machine’. PhD thesis, Technische Universiteit Eindhoven, Eindhoven, 2001.
    10. 10)
      • 29. Mahmoudi, A., Kahourzade, S., Rahim, N.A., et al: ‘Improvement to performance of solid-rotor-ringed line-start axialflux permanent-magnet motor’, Progress Electromagn. Res., 2012, 124, pp. 383404.
    11. 11)
      • 26. Boldea, I., Nasar, S.A.: ‘The induction machines design handbook 2nd ed.’ (CRC Press, Florida,USA, 2009).
    12. 12)
      • 23. Kahourzade, S., Mahmoudi, A., Ping, H.W., et al: ‘A comprehensive review of axial-flux permanent-magnet machines’, Can. J. Electr. Comput. Eng., 2014, 37, (1), pp. 1933.
    13. 13)
      • 2. Elistratova, V.: ‘Optimal design of line-start permanent magnet synchronous motors of high efficiency’. PhD thesis, PRES Université Lille Nord-de-France, 2016.
    14. 14)
      • 6. Yıldırız, E., Önbilgin, G.: ‘Comparative study of new axial field permanent magnet hybrid excitation machines’, IET Electron. Power Appl., 2017, 11, (7), pp. 13471355.
    15. 15)
      • 27. Eker, M., Akar, M., Emeksiz, C., et al: ‘Design of self-starting hybrid axial flux permanent magnet synchronous motor connected directly to line’, J. Electr. Eng. Technol., 2018, 13, (5), pp. 19211930.
    16. 16)
      • 19. Donato, G., Capponi, F.G., Caricchi, F.: ‘No-load performance of axial flux permanent magnet machines mounting magnetic wedges’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 37683779.
    17. 17)
      • 14. Caricchi, F., Capponi, F.G., Crescimbini, F., et al: ‘Experimental study on reducing cogging torque and no-load power loss in axial-flux permanent-magnet machines with slotted winding’, IEEE Trans. Ind. Appl., 2004, 40, (4), pp. 10661075.
    18. 18)
      • 3. Esen, G.K.: ‘Türkiye ve dünyada elektrik motorları enerji tüketimi ve ilgili teknik mevzuat’, 2015. Available at http://www.emo.org.tr/ekler/364734147179187_ek.pdf, accessed 02.06.2017.
    19. 19)
      • 12. Liu, C.T., Chiang, T.S., Zamora, J.F.D., et al: ‘Field-oriented control evaluations of a single-sided permanent magnet axial-flux motor for an electric vehicle’, IEEE Trans. Magn., 2003, 39, (5), pp. 32803282.
    20. 20)
      • 13. Profumo, F., Zhang, Z., Tenconi, A.: ‘Axial flux machines drives: a new viable solution for electric cars’, IEEE Trans. Ind. Electron., 1997, 44, (1), pp. 3945.
    21. 21)
      • 22. Mahmoudi, A., Kahourzade, S., Rahim, N.A., et al: ‘Design, analysis, and prototyping of a novel-structured solid-rotorringed line-start axial-flux permanent-magnet motor’, IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 17221734.
    22. 22)
      • 17. Aydın, M., Huang, S., Lipo, T.A.: ‘Torque quality and comparison of internal and external rotor axial flux surface-magnet disc machines’, IEEE Trans. Ind. Electron., 2006, 53, (3), pp. 822830.
    23. 23)
      • 9. Aküner, M.C., Hüner, E.: ‘The air gap and angle optimization in the axial flux permanent magnet motor’, Electron. Electr. Eng., 2011, 17, (110), pp. 2529.
    24. 24)
      • 10. Capponi, F.G., Donato, G., Caricchi, F.: ‘Recent advances in axial-flux permanent-magnet machine technology’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 21902205.
    25. 25)
      • 15. Huang, S., Aydın, M., Lipo, T.A.: ‘TORUS concept machines: pre-prototyping design assessment for two major topologies’. IEEE Industry Applications Conf. Record of the 36th IAS Annual Meeting, Chicago, USA, 30 September–4 October 2001, vol. 3, pp. 16191625.
    26. 26)
      • 21. Hüner, E., Aküner, M.C.: ‘An overview control method of axial flux motors’. 5th Int. Advanced Technologies Symp. (IATS'09), Karabük, Türkiye, May 2009, pp. 15.
    27. 27)
      • 20. Aydın, M., Gülec, M.: ‘Reduction of cogging torque in double-rotor axial-flux permanent-magnet disk motors: a review of cost-effective magnet-skewing techniques with experimental verification’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 50255034.
    28. 28)
      • 16. Locment, F., Semail, E., Piriou, F.: ‘Design and study of a multiphase axial-flux machine’, IEEE Trans. Magn., 2003, 42, (4), pp. 14271430.
    29. 29)
      • 5. Mahmoudi, A., Kahourzade, S., Rahim, N.A., et al: ‘Design and prototyping of an optimised axial-flux permanent-magnet synchronous machine’, IET Electron. Power Appl., 2013, 7, (5), pp. 338349.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5579
Loading

Related content

content/journals/10.1049/iet-epa.2018.5579
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading