access icon free Noise reduction of axial-flux motors by combining various pole-arc coefficients and circumferential shifting of permanent magnets: analytical approach

The electromagnetic noise of an axial-flux in-wheel motor (AFWM) is reduced by combining various pole-arc coefficients and circumferential shifting of permanent magnets (PMs) here. First, the analytical model of the air-gap magnetic field for the AFWM with various pole-arc coefficients and circumferential shifting of PMs is established. The influence of edging effect and stator slotting is taken into account through the radial correction function and complex relative permeance function, respectively. Subsequently, the torque and electromagnetic noise of the AFWM are derived analytically. A multi-objective optimisation of the AFWM is then implemented by the NSGA-II (non-dominated sorting genetic algorithm) based on the proposed analytical approach. Finally, the electromagnetic performance and vibroacoustic characteristics of the initial and optimised motors are compared and analysed. The results show that the proposed method by combining various pole-arc coefficients and circumferential shifting of PMs can reduce the noise of axial-flux motors effectively, without sacrificing the output torque. This study is of great significance for the vibration and noise reduction of axial-flux motors.

Inspec keywords: finite element analysis; stators; torque; magnetic flux; air gaps; machine theory; genetic algorithms; vibrations; permanent magnet motors; magnetic fields

Other keywords: permanent magnets; optimised motors; initial motors; analytical model; air-gap magnetic field; electromagnetic noise; pole-arc coefficients; axial-flux motors; noise reduction; AFWM; circumferential shifting; analytical approach; PMs

Subjects: Optimisation techniques; Synchronous machines; a.c. machines; Finite element analysis; d.c. machines; Optimisation techniques

References

    1. 1)
      • 20. Zarko, D., Ban, D., Lipo, T.A.: ‘Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance’, IEEE Trans. Magn., 2006, 42, (7), pp. 18281837.
    2. 2)
      • 11. Yang, H.Y., Lim, Y.C., Kim, H.C.: ‘Acoustic noise/vibration reduction of a single-phase Srm using skewed stator and rotor’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 42924300.
    3. 3)
      • 2. Zhang, B., Seidler, T., Dierken, R., et al: ‘Development of a yokeless and segmented armature axial flux machine’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 20622071.
    4. 4)
      • 9. Le Besnerais, J.: ‘Vibroacoustic analysis of radial and tangential air-gap magnetic forces in permanent magnet synchronous machines’, IEEE Trans. Magn., 2015, 51, (6), pp. 19.
    5. 5)
      • 3. Giulii Capponi, F., De Donato, G., Caricchi, F.: ‘Recent advances in axial-flux permanent-magnet machine technology’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 21902205.
    6. 6)
      • 5. Torregrossa, D., Peyraut, F., Cirrincione, M., et al: ‘A new passive methodology for reducing the noise in electrical machines: impact of some parameters on the modal analysis’, IEEE Trans. Ind. Appl., 2010, 46, (5), pp. 18991907.
    7. 7)
      • 10. Wang, C.Y., Bao, X.H., Xu, S., et al: ‘Analysis of vibration and noise for different skewed slot-type squirrel-cage induction motors’, IEEE Trans. Magn., 2017, 53, (11), pp. 11.
    8. 8)
      • 22. Deng, W.Z., Zuo, S.G., Lin, F., et al: ‘Influence of pole and slot combinations on vibration and noise in external rotor axial flux in-wheel motors’, IET Electr. Power Appl., 2017, 11, (4), pp. 586594.
    9. 9)
      • 12. Yang, H.D., Chen, Y.S.: ‘Influence of radial force harmonics with low mode number on electromagnetic vibration of PMSM’, IEEE Trans. Energy Convers., 2014, 29, (1), pp. 3845.
    10. 10)
      • 4. Takahashi, T., Takemoto, M., Ogasawara, S., et al: ‘Size and weight reduction of an in-wheel axial-gap motor using ferrite permanent magnets for electric commuter cars’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 39273935.
    11. 11)
      • 1. Aydin, M., Gulec, M.: ‘Reduction of cogging torque in double-rotor axial-flux permanent-magnet disk motors: a review of cost-effective magnet-skewing techniques with experimental verification’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 50255034.
    12. 12)
      • 16. Dong, J.N., Jiang, J.W., Howey, B., et al: ‘Hybrid acoustic noise analysis approach of conventional and mutually coupled switched reluctance motors’, IEEE Trans. Energy Convers., 2017, 32, (3), pp. 10421051.
    13. 13)
      • 19. Zhang, Y.J., Ho, S.L., Wong, H.C., et al: ‘Analytical prediction of armature-reaction field in disc-type permanent magnet generators’, IEEE Trans. Energy Convers., 1999, 14, (4), pp. 13851390.
    14. 14)
      • 17. Deng, W.Z., Zuo, S.G.: ‘Analytical modeling of the electromagnetic vibration and noise for an external-rotor axial-flux in-wheel motor’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 19912000.
    15. 15)
      • 21. Tiegna, H., Amara, Y., Barakat, G.: ‘A new quasi-3-D analytical model of axial flux permanent magnet machines’, IEEE Trans. Magn., 2014, 50, (2), pp. 817820.
    16. 16)
      • 13. Gulec, M., Aydin, M.: ‘Magnet asymmetry in reduction of cogging torque for integer slot axial flux permanent magnet motors’, IET Electr. Power Appl., 2014, 8, (5), pp. 189198.
    17. 17)
      • 14. Wu, S.L., Zuo, S.G., Wu, X.D., et al: ‘Magnet modification to reduce pulsating torque for axial flux permanent magnet synchronous machines’, Appl. Comput. Electromagn. Soc. J., 2016, 31, (3), pp. 294303.
    18. 18)
      • 7. Fakam, M., Hecquet, M., Lanfranchi, V., et al: ‘Design and magnetic noise reduction of the surface permanent magnet synchronous machine using complex air-gap permeance’, IEEE Trans. Magn., 2015, 51, (4), pp. 19.
    19. 19)
      • 8. Zhou, G.Y., Shen, J.X.: ‘Rotor notching for electromagnetic noise reduction of induction motors’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 33613370.
    20. 20)
      • 15. Islam, R., Husain, I.: ‘Analytical model for predicting noise and vibration in permanent-magnet synchronous motors’, IEEE Trans. Ind. Appl., 2010, 46, (6), pp. 23462354.
    21. 21)
      • 18. Chan, T.F., Lai, L.L., Xie, S.M.: ‘Field computation for an axial flux permanent-magnet synchronous generator’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 111.
    22. 22)
      • 6. Lee, S.H., Hong, J.P., Hwang, S.M., et al: ‘Optimal design for noise reduction in interior permanent-magnet motor’, IEEE Trans. Ind. Appl., 2009, 45, (6), pp. 19541960.
    23. 23)
      • 23. Deng, W.Z., Zuo, S.G.: ‘Axial force and vibroacoustic analysis of external-rotor axial-flux motors’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 20182030.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5554
Loading

Related content

content/journals/10.1049/iet-epa.2018.5554
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading